MPAR:
Defining The Technical Issues

Tracy Wallace
tracy.wallace@gtri.gatech.edu
Georgia Tech Research Institute
(under contract to the FAA)
November 2009
Major MPAR Technical Issues

- Dual polarization performance for weather measurements
- In-field calibration (polarization characteristics, sensitivity) and subsequent impact on system cost
- Cost (developmental, production, and sustainment costs including software updates)
- Radome implementation and effects on performance, especially polarization
- Cooling (air versus liquid)
- Requirements creep (some requirements can take us out of the realm of low-cost commercially-available solutions)
Dual Polarization Performance

• High quality dual polarization measurements are desired to enable better quantification of meteorological phenomena

• 30 dB cross pol isolation over entire scan region, not just boresite, will require:
 • Element level polarization adjustments that change with beam position
 • Complicated T/R module and radiator design
 • Utilization of circulator at each module? (Impedance differences between transmit and receive)
 • Multi-layer RF PCBs can suffer from coupling and EMI issues

• Polarization Align/Cal may be required for all beam positions

• This degree of polarization control will be a cost driver
In-Field Calibration

• Must have a plan as to how these radars will be maintained and calibrated over time

• In-field monitoring of performance, including polarization purity as a function of scan will be difficult and expensive
 • Calibration over temperature
 • After hardware failures/prior to maintenance actions
 • Post maintenance actions

• Could add substantial cost at the system level

Factory A&C

In-Field A&C (Integrated NF Probe Option)
Cost

• Historically, the largest recurring cost is the array electronics

• As the array electronics get cheaper, the proportion of cost apportioned to other subsystems will increase

• If the cost goal for MPAR is $10M ($2.5M per face);
 - Assume 40% of the cost in the array, equates to $200 per element for 5000 elements ($125 if array is 25% of total)
 - Equates to $50 per element for an array of 20,000 elements ($31 if array is 25% of total)

• Implementation of low-cost digital beamforming architecture to support multiple beams on receive appears challenging

• Initial development and system engineering costs may be high, will have to be amortized over a number of systems

• Recurring costs also include software updates and maintenance – open systems architecture SW is critical
Cooling

- Air versus liquid cooling
 - Consensus is to avoid liquid if possible, but remember liquid is a better coolant than air
 - Panel architectures can be cumbersome to air cool due to ducting issues and maintaining constant temperature across the array to avoid gradients
 - Slat architecture easier to cool, can blow air through the array (if allowed by radome configuration) but is more difficult to accommodate dual polarization
 - Strong motivation for developing higher efficiency power amplifiers
Power Density Comparison for Active Phased Arrays

Element density goes as f^2
Power/element goes as $1/f^2$

Minimum Weight and Power with Low Power Density (LPD)
(COTS Technologies)

Liquid Cooling Eliminated

Conventional Military Technology

High Power Technology

Severe cooling problems

Should be feasible to air-cool an MPAR array
Radome

• What type of radome makes the most sense?
 • Flat, array mounted (integrated onto the panels?)
 • Rigid, stand-off type
 • Inflatable or bubble-type

• Choice can affect electrical properties of the front-end electronics

• Choice can affect how cooling is performed
What Technical Issues Should the TAP Program Address? (1 of 2)

- Polarization performance
 - Prototype subarray hardware build, including radiating elements, characterize in near field range
- Calibration
 - Require contractors to describe a calibration regimen for monitoring and maintaining performance
 - Must be included in system-level cost models
- Cost
 - Initial cost models for array hardware, scaled up to include entire objective radar architecture
What Technical Issues Should the TAP Program Address? (2 of 2)

• Radome
 • Does the contractor advocate a flat cover type radome (integrated onto panel?) or inflatable bubble type, or other, and provide analysis/justification in Phase 2

• Cooling
 • Initial hardware build; extrapolate to full array design

• Requirements Creep
 • Require contractors to address open-architecture issues for both hardware and software (key to implementing new functionality, especially in software)