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Pioneer Use of Array Capabilities
• Archimedes heat ray (215-212 BC)
– Mirrors acting collectively as a parabolic reflector

MPAR Symposium 17 November 2009 Norman, OK2

Source: Wikipedia



Outline (and Disclaimer)
PAR U i C biliti d i d f• PAR Unique Capabilities derived from

– Antenna physical design
– Electronically steerable beamy
– Adaptive array

My approach for this workshop• My approach for this workshop
– What is possible vs. what makes sense
– Derived capabilities
– No calculus! 
– Background material
– Not comprehensiveNot comprehensive
– A little biased towards weather

☺
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☺ Advantage

Disadvantage



What’s Unique to PAR?
P b li A Ph d A AParabolic Antenna
– Single radiation element

• Single transmitter

Phased Array Antenna
– Multiple radiation elements

• Multiple transmitters• Single transmitter
• Single receiver

– Non-conformal

• Multiple transmitters
• Multiple receivers

– Conformal
– Fixed beam pattern
– Mechanical steering

– Variable beam pattern
– Electronic steering
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Graceful Degradation
P i i l d

1

• Passive array or conventional radar
– One transmitter/receiver

Catast ophic loss of f nction– Catastrophic loss of function

• Active array
Many T/R elements Random degradation– Many T/R elements

– No single point of failure
– Maintenance not urgent

Random degradation

Maintenance not urgent 

“The Navy’s experience with the 
SPY 1 PAR d t t th t tSPY-1 PAR demonstrates that up to 
10% of the T/R elements can fail 
before there is significant 
degradation in performance.” 
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g p
(Source: JAG/PARP report 2006)

Source: Evaluation of the MPAR Planning Process (NRC 2008)



B bl k h

Beam Blockage Mitigation2

• Beam blockage occurs when
the radar beam is blocked
by terrain

blockage

by terrain
– Blockage may be total or partial
– Blockage introduces biasesBlockage introduces biases

in meteorological products

• Electronic steering can be
exploited to “graze” the horizon

Constant
Elevation

Electronically 
Steered
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ElevationElevation



Elimination of Beam Smearing
f• Radars use many samples of a resolution 

volume to reduce errors of estimates
– Mechanically steered antenna

• Samples come from different volumes
• Beam is smeared

– Electronically steered antenna
S l f h l• Samples come from the same volume

• Beam is not smeared
• No moving parts!• No moving parts!

beam #1 beam #2
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Sample No.1 2 3 4 5 1



Spatial Resolution
A i ff i b d d

3

• Antenna motion creates effective broadened 
beamwidth
Mitigated via signal processing at the

Effective beamwidth for a 
scanning antenna as a 
function of rotation rate– Mitigated via signal processing at the 

price of larger errors of estimates
function of rotation rate

Legacy Resolution Super-Resolution

A PAR uses intrinsic beam resolution

Tornado outbreak in Oklahoma City, 9 May 2003
(Source: Curtis et al. 2003) 

Source: Doppler Radar and Weather 
Observations (Doviak and Zrnic 1993)
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– A PAR uses intrinsic beam resolution 
without degradation in data quality



The Doppler Spectrum
f• Power-weighted distribution of Doppler 

velocities in the radar volume

power power

velocity0 velocityvr

power power
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velocityvr
velocityvr



Ground Clutter Filtering
B i l d t d l ti f i l

4

• Beam smearing leads to decorrelation of signals
– Each sample comes from a slightly different volume!

Beam smearing leads to spectral broadening• Beam smearing leads to spectral broadening
– Ground clutter contaminates a larger fraction of the 

spectrum and overlaps more with signal of interestspectrum and overlaps more with signal of interest

power power

velocity0

Id l S t

velocity0

S d S t
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Ideal Spectrum Smeared Spectrum



Spectrum Width Measurements
Th id h h l i i

5

• The spectrum width measures the relative motion 
of scatterers in the radar volume 
Turbulence and shear

power

σ– Turbulence and shear

• The spectrum width depends 
on beam smearing l it

σv

on beam smearing velocityvr

2 2 2 2 2 2
ασ σ σ σ σ σ= + + + +v s d o t

Meteorological Beam 
smearing

– For typical rotation rates on the WSR-88D
• 10% of typical spectrum width of weather signals

• No beam smearing leads to
ασ ≈
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• No beam smearing leads to  
– More meaningful spectrum width estimates



Spectrum Width and Data Quality6

• Spectrum width dictates
the variance of 
measurements

– Larger spectrum widths
lead to larger errors oflead to larger errors of
velocity estimates

Source: Polarimetric Doppler Weather Radar 
(Bringi and Chandrasekar 2001)

2 2 2 2 2 2
( g )

2 2 2 2 2 2
ασ σ σ σ σ σ= + + + +v s d o t

Meteorological Beam

• No beam smearing leads to

Meteorological Beam 
smearing
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• No beam smearing leads to  
– More accurate velocity estimates



Data Quality vs. Update Time (I)
F d d li• Faster updates vs. data quality

– Update time depends on time spent at each position
Faste pdates can be achie ed b spending less time at– Faster updates can be achieved by spending less time at 
each position

• Reducing the number of positions is not an option! 

– Less time at each position results in fewer samples for 
integration
F l f i t ti l d t l i f– Fewer samples for integration lead to larger variance of 
measurements

• Techniques can be used to maintain 
cτ /2L

the variance while reducing 
the number of samples

– Range oversampling
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– Pulse compression cτ /2
Range Oversampling



How Fast Can We Go?7

• Faster updates
– Mechanically steered antenna

• Higher antenna rotation rates
– Increased wear and tear
– Limited by pedestal characteristicsLimited by pedestal characteristics
– Possible loss of gain

– Electronically steered antennay
• Can dwell as short as needed on each position
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Data Quality vs. Update Time (II)
V i d i f i i d d• Variance reduction from integration depends on 
number of samples
More independent samples can be obtained by– More independent samples can be obtained by 
increasing the time between samples
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– Increasing the time between samples increases the 
update time!



Beam Multiplexing8

• Allows more time between samples without 
increasing the update time

– Multitasking leads to faster updates
BeamsContiguous BMX

T
1

2

T

2

3

4
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☺ Faster updates and/or lower errors

Incompatible w/standard processing



Multifunction
Si l d b h d• Single radar can be shared among 
more than one radar function

– Frequency diversityq y y
• Same as multiple radars sharing one antenna
• Not unique to PAR

– Imaging radarImaging radar
• Beams formed via signal processing
• High data throughput
• Computationally intensive Weather Aircraft Computationally intensive

– Time multiplexing
• Tasks are interleaved
• Needs scheduling

SurveillanceSurveillance

Weather 
TrackingAircraft • Needs scheduling

– Priority, location, severity, …

• Possibility of overload!

Tracking
Tracking
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Feasibility

☺ Resource sharing



Elevation-Prioritized Scanning
on the NWRT PAR

• Strategy yields different 
update times at different 
l ti b h d lielevations by scheduling 

14 tilts in a non-
sequential mannerq

– Low-levels: 42 s updates 
– Midlevels: 84 s updates
– Upper-levels: 126 s updates– Upper-levels: 126 s updates

• Currently working on y g
schedule-based scanning

– Multifunction capabilities
• Aircraft tracking
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• Aircraft tracking
• Weather surveillance

Courtesy of P. Heinselman (NSSL)13 May 2009

NWRT PARNWRT PAR



Scheduling Multiple Tasks
T a king t o ells and s eillan e

9

D1

L1

Tasks 

Tracking two cells and surveillance

D2

L2

requested

Tasks 
scheduled

D1

D2

Surveillance

L1 D1L2

D2

D2
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D2

Courtesy of R. Reinoso (OU)



Adaptive Scanning (I)

Conventional 
scanning

Conventional 
scanningg

Everywhere
Sequential

g

Everywhere
SequentialSequentialSequential

Adaptive scanning

Areas of interest only

Adaptive scanning

Areas of interest onlyAreas of interest only
Arbitrary

Areas of interest only
Arbitrary

Courtesy of C Curtis (NSSL)
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Courtesy of C. Curtis (NSSL)
☺ Faster updates

May miss new developments



Adaptive Scanning (II)
F d Ob i

10

• Focused Observations
– Scan areas of interest only

Pe fo m pe iodic s eillance– Perform periodic surveillance

• Adaptive Acquisition
Adjust acquisition parameters on the fly

Warn on forecast vision

– Adjust acquisition parameters on the fly
• Number of samples

– Spectral Processing

• Pulse repetition time
• Waveform

– Staggered PRT
– Phase coding
– Beam Multiplexing

☺ Faster updates
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Complex decisions

☺ Improved data quality



ADAPTS

Adaptive Scanning 
on the NWRT PAR
• ADAPTS: Adaptive DSP Algorithm for PAR Timely Scans
– Beam positions are classified as active or inactive

• Only active beam positions are scanned• Only active beam positions are scanned
• Full volume scans are scheduled periodically

– Active beam positions meet one or more criteria
• Elevation angle
• Continuity and coverage
• Neighborhood

09 AUG 2008
Reflectivity• Neighborhood 8.7 deg
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Real-time display of active beam positions



Si l b ki

Monopulse Tracking11

• Single beam tracking
– Cannot resolve position 

within the beamwithin the beam

• Conical-scan tracking
– Errors due to noise andErrors due to noise and 

target fluctuation
– Easily jammed

• Monopulse tracking
– Split antenna aperture +
– Received sum (Σ) and 

difference (Δ) channels

☺ d ki
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☺ Improved tracking accuracy

Computational complexity
Source: www.radartutorial.eu



Interferometry
f

12

• Spaced antenna interferometry (SAI)
– Complementary to the Doppler method

• Used by wind profilers for 50+ years

– Uses two or more spaced antennas +

• Cross-correlation of signals from spaced antennas 
can be used to measure winds & shear perpendicular 
to the beam direction 1

c  Estimates

Source: Doviak and Zhang (2008)to the beam direction
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☺ Better wind measurements

Long dwell times
−0.1 −0.05 0 0.05 0.1

0

Time Lag, Second

Cross-correlation peak shifts due  to signal 
delay passing over spaced antennas



f

Adaptive Beamforming13

• Spatial filtering
– Antenna pattern can be 

altered using active array
Main lobe

altered using active array 
or auxiliary channels

– Nulls can be placed in 
Side lobes

p
the direction of clutter

With SLCWithout SLC

clutter

target

clutter

target

☺ d d li

NullSource: Le (2009)
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☺ Improved data quality

Computational complexity



Imaging Radar
Wid (“ il d”) t it b

14

• Wide (“spoiled”) transmit beam
– Rapid volumetric coverage
– In the extreme: ubiquitous radarq

• Narrow receive beams
– “Atmospheric camera”

Di it l b f i t “i fi it ”

spoiled 
transmitted 
beam

– Digital beamforming can generate “infinite” 
simultaneous beams via software

– Can control resolution and spatial sampling
– Can mitigate clutter contamination

• Simultaneous multifunction
– No time multiplexing

narrow received beams

No time multiplexing
– Limited by BW & processing capacity

☺ Faster updates
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Sensitivity loss

Computational complexity
Source: Isom et al. (2009)



Summary
A il b i h d d lik h• Agile beam, active phased array radars like the 
proposed MPAR have unique capabilities relative 
to conventional rotating antenna radarsto conventional rotating-antenna radars

– Antenna physical design
– Electronically steerable beam

Long-Range Surveillance

Severe Non-Cooperative Weather 

MPAR concept

Electronically steerable beam
– Adaptive array

Weather Targets Fronts

Terminal Surveillance

WMD 
Cloud

• Careful tradeoff analyses should be conducted 
before implementing one or more of thesebefore implementing one or more of these 
capabilities
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Thank you!

Any questions?

For more information about the demonstration 
of new capabilities on the NWRT PAR visit:
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of new capabilities on the NWRT PAR visit:
http://cimms.ou.edu/~torres


