

Phased-Array Radar Unique Capabilities

Dr. Sebastián Torres

CIMMS /The University of Oklahoma and National Severe Storms Laboratory/NOAA

Multifunction Phased-Array Radar Symposium Phased-Array Radar Workshop

17 November, 2009

Pioneer Use of Array Capabilities

- Archimedes heat ray (215-212 BC)
- Mirrors acting collectively as a parabolic reflector

Source: Wikipedia

Outline (and Disclaimer)

- PAR Unique Capabilities derived from
 - Antenna physical design
 - Electronically steerable beam
 - Adaptive array
- My approach for this workshop
- What is possible vs. what makes sense
- Derived capabilities
- No calculus!
- Background material
- Not comprehensive
- A little biased towards weather

Optimizet Advantage

MPAR Symposium

😕 Disadvantage

Figure 3: Illustration of potential for PAR capabilities to translate into weather service improvements

17 November 2009

What's Unique to PAR?

Parabolic Antenna

- Single radiation element
 - Single transmitter
 - Single receiver
- Non-conformal
- Fixed beam pattern
- Mechanical steering

Phased Array Antenna

- Multiple radiation elements
 - Multiple transmitters
 - Multiple receivers
- Conformal
- Variable beam pattern
- Electronic steering

Graceful Degradation

- Passive array or conventional radar
 - One transmitter/receiver
 - Catastrophic loss of function
- Active array
 - Many T/R elements
 - No single point of failure
 - Maintenance not urgent

"The Navy's experience with the SPY-1 PAR demonstrates that up to 10% of the T/R elements can fail before there is significant degradation in performance." (Source: JAG/PARP report 2006)

Source: Evaluation of the MPAR Planning Process (NRC 2008)

Beam Blockage Mitigation 2

the radar beam is blocked

Blockage introduces biases

in meteorological products

Beam blockage occurs when blockage Blockage may be total or partial

- Electronic steering can be exploited to "graze" the horizon

MPAR Symposium

by terrain

Norman, OK

Elimination of Beam Smearing

- Radars use many samples of a resolution volume to reduce errors of estimates
 - Mechanically steered antenna
 - Samples come from different volumes
 - Beam is smeared
 - Electronically steered antenna
 - Samples come from the same volume
 - Beam is not smeared
 - No moving parts!

3 Spatial Resolution

- Antenna motion creates effective broadened
 beamwidth
 Effective beamwidth for a complex on terms on
 - Mitigated via signal processing at the price of larger errors of estimates

Tornado outbreak in Oklahoma City, 9 May 2003 (Source: Curtis et al. 2003)

Source: Doppler Radar and Weather Observations (Doviak and Zrnic 1993)

 A PAR uses intrinsic beam resolution without degradation in data quality

The Doppler Spectrum

Power-weighted distribution of Doppler velocities in the radar volume

Q

Ground Clutter Filtering

- Beam smearing leads to decorrelation of signals
- Each sample comes from a slightly different volume!
- Beam smearing leads to spectral broadening
 - Ground clutter contaminates a larger fraction of the spectrum and overlaps more with signal of interest

10

Spectrum Width Measurements

- The spectrum width measures the relative motion of scatterers in the radar volume power f
- Turbulence and shear
- The spectrum width depends on beam smearing

on beam smearing

$$\sigma_v^2 = \sigma_s^2 + \sigma_d^2 + \sigma_o^2 + \sigma_t^2 + \sigma_d^2$$
Meteorological Beam

- For typical rotation rates on the WSR-88D
 - $\sigma_{\alpha} pprox$ 10% of typical spectrum width of weather signals

smearing

- No beam smearing leads to
 - More meaningful spectrum width estimates

MPAR Symposium

17 November 2009

Spectrum Width and Data Quality

- Spectrum width dictates the variance of measurements
- Larger spectrum widths lead to larger errors of velocity estimates

$$\sigma_v^2 = \sigma_s^2 + \sigma_d^2 + \sigma_o^2 + \sigma_t^2 + \sigma_\alpha^2$$

Meteorological Beam smearing

- No beam smearing leads to
 - More accurate velocity estimates

12

Source: Polarimetric Doppler Weather Radar (Bringi and Chandrasekar 2001)

Norman, OK

Data Quality vs. Update Time (I)

- Faster updates vs. data quality
 - Update time depends on time spent at each position
 - Faster updates can be achieved by spending less time at each position
 - Reducing the number of positions is not an option!
 - Less time at each position results in fewer samples for integration
 - Fewer samples for integration lead to larger variance of measurements cτ/2L
 - Techniques can be used to maintain the variance while reducing the number of samples
 - Range oversampling
 - Pulse compression

Range Oversampling

How Fast Can We Go?

• Faster updates

7

- Mechanically steered antenna
 - Higher antenna rotation rates
 - Increased wear and tear
 - Limited by pedestal characteristics
 - Possible loss of gain
- Electronically steered antenna
 - Can dwell as short as needed on each position

Data Quality vs. Update Time (II)

- Variance reduction from integration depends on number of samples
- More independent samples can be obtained by increasing the time between samples

Increasing the time between samples increases the update time!

17 November 2009

Beam Multiplexing

- Allows more time between samples without increasing the update time
 - Multitasking leads to faster updates

③ Faster updates and/or lower errors

☺ Incompatible w/standard processing

Multifunction

- Single radar can be shared among more than one radar function
 - Frequency diversity
 - Same as multiple radars sharing one antenna
 - Not unique to PAR
 - Imaging radar
 - Beams formed via signal processing
 - High data throughput
 - Computationally intensive
 - Time multiplexing
 - Tasks are interleaved
 - Needs scheduling
 - Priority, location, severity, ...
 - Possibility of overload!

Resource sharing

MPAR Symposium

18

Elevation-Prioritized Scanning on the NWRT PAR

20

15.

17 November 2009

- Strategy yields different update times at different elevations by scheduling 14 tilts in a nonsequential manner
- Low-levels: 42 s updates
- Midlevels: 84 s updates
- Upper-levels: 126 s updates
- Currently working on schedule-based scanning
 - Multifunction capabilities
 - Aircraft tracking
 - Weather surveillance

Scheduling Multiple Tasks

Adaptive Scanning (I)

Conventional scanning

Everywhere Sequential

Adaptive scanning

Areas of interest only Arbitrary

③ Faster updates

⁽²⁾ May miss new developments

MPAR Symposium

17 November 2009

Adaptive Scanning (II)

- Focused Observations
 - Scan areas of interest only
 - Perform periodic surveillance
- Adaptive Acquisition
- Adjust acquisition parameters on the fly
 - Number of samples
 - Spectral Processing
 - Pulse repetition time
 - Waveform
 - Staggered PRT
 - Phase coding
 - Beam Multiplexing

Faster updates

- **Improved data quality**
- ${}^{\scriptsize \ensuremath{ \otimes }}$ Complex decisions

Warn on forecast vision

Adaptive Scanning

- ADAPTS: <u>Adaptive DSP Algorithm for PAR Timely Scans</u>
- Beam positions are classified as **active** or **inactive**
 - Only active beam positions are scanned
 - Full volume scans are scheduled periodically
- Active beam positions meet one or more criteria
 - Elevation angle
 - Continuity and coverage
 - Neighborhood

11 Monopulse Tracking

- Single beam tracking
- Cannot resolve position within the beam
- Conical-scan tracking
 - Errors due to noise and target fluctuation
 - Easily jammed
- Monopulse tracking
 - Split antenna aperture
 - Received sum (Σ) and difference (Δ) channels
 - Improved tracking accuracy
 - Computational complexity

Source: www.radartutorial.eu

12 Interferometry

- Spaced antenna interferometry (SAI)
 - Complementary to the Doppler method
 - Used by wind profilers for 50+ years
 - Uses two or more spaced antennas 🔬+ 🚵
 - Cross-correlation of signals from spaced antennas can be used to measure winds & shear perpendicular to the beam direction

13 Adaptive Beamforming

- Spatial filtering
 - Antenna pattern can be altered using active array or auxiliary channels
 - Nulls can be placed in the direction of clutter

Improved data quality
 Computational complexity

Imaging Radar

- Wide ("spoiled") transmit beam
- Rapid volumetric coverage
- In the extreme: ubiquitous radar
- Narrow receive beams
 - "Atmospheric camera"
 - Digital beamforming can generate "infinite" simultaneous beams via software
 - Can control resolution and spatial sampling
 - Can mitigate clutter contamination
- Simultaneous multifunction
 - No time multiplexing
 - Limited by BW & processing capacity

Faster updates

- 😕 Sensitivity loss
- Computational complexity

26

spoiled

transmitted beam

leceiver Array

Norman, OK

Summary

- Agile beam, active phased array radars like the proposed MPAR have unique capabilities relative to conventional rotating-antenna radars
 - Antenna physical design
 - Electronically steerable beam
 - Adaptive array

 Careful tradeoff analyses should be conducted before implementing one or more of these capabilities

Thank you!

Any questions?

For more information about the demonstration of new capabilities on the NWRT PAR visit: http://cimms.ou.edu/~torres