

Presented by: Larry Bovino

Senior Engineer RADAR and Combat ID Division

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Army Phased Array RADAR Overview

MPAR Symposium II

17-19 November 2009

National Weather Center, Oklahoma University, Norman, OK

THE OVERALL CLASSIFICATION OF THIS BRIEFING IS UNCLASSIFIED

UNCLASSIFIED RADAR at CERDEC

§ Ground Based

- § Counterfire
- § Air Surveillance
- **§** Ground Surveillance
- **§** Force Protection

§ Airborne

- § SAR
- § GMTI/AMTI

§ Phased Arrays

RDECO

- § Digital Arrays
- **§** Data Exploitation
- § Advanced Signal Processing (e.g. STAP, MIMO)
- § Advanced Signal Processors
- § VHF to THz

Design Drivers and Constraints

§ Requirements

RDFFO

- **§** Operational Needs flow down to System Specifications
- **§** Platform or Mobility/Transportability
 - Size, Weight and Power (SWaP)

§ Reliability/Maintainability

§ Modularity, Minimize Single Point Failures

§ Cost/Affordability

§ Unit and Life Cycle

RADAR Antenna Technology at Army Research Laboratory

- **§** Computational electromagnetics
- § In-situ antenna design & analysis

§ Application Examples:

- § Body worn antennas
- S Rotman lens
- **§** Wafer level antenna
- **§** Phased arrays with integrated MEMS devices
- § Collision avoidance radar
- § Metamaterials

UNCLASSIFIED Antenna Modeling

§ CEM "Toolkit" requires expert users

§ EM Picasso (MoM 2.5D) – modeling of planar antennas (e.g., patch arrays)
§ XFDTD (FDTD) – broadband modeling of 3-D structures (e.g., spiral)
§ HFSS (FEM) – modeling of 3-D structures (e.g., horn antennas)
§ FEKO & GEMACS (3-D MoM/FMM)

- **§** Ground plane models required for most Army applications
- § In-situ antenna simulations model the effects of structures, platforms, and the human body over lossy ground High-band Sub-system,
 - § The radiation pattern of the antenna
 - § The in-situ antenna impedance (bandwidth)
 - § Co-site mitigation (multiple antennas or vehicles)
 - § EMI/EMC and RAD HAZ issues
 - § Low observables and signature management

§ HPC systems are required at high frequency

Low-band Sub-system, Distributed Adaptive

Element Arrays

Steered Beam(s)

§ Antenna development for military applications is a collaborative process that involves DoD labs, universities and industry

§ Antenna has to be designed with platform and environment in mind

§ In-situ antenna design & analysis are essential to successful development

§ New simulation tools are still needed for new frontiers, such as metamaterials and nano-designs

§ Fully integrated, adaptive designs have been at the forefront of antenna research and development

§ Wideband, low profile, high efficiency, polarization diversity and low cost are still requirements

Phased Array RADAR at CERDEC

§ UHF building penetration radar

§ Operated stationary for MTD and moving for SAR

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

UNCLASSIFIED SOMISR II Antenna

§ Antenna: Ultra wideband linear array of Vivaldi elements

- S Lightweight, relatively low cost, ~2 x ½m
- Six active elements, two dummy elements, no grating lobes
- Single transmitter would be switched between two end elements
- Six coherent UHF digital receivers, one at each active element
- **§** Total FOV 60° digitally beamformed to eight beams of 7.1°

§ MIMO-inspired ping-pong type transmitter and digital beamformer

- S Creates an effective virtual receive aperture
- Improves azimuth accuracy performance equivalent to conventional array twice the width
- **§** Allowed for reduced size/weight
- **§** Eight simultaneously formed receive beams

RDECOM SOMISR II Eight-Element Array with Back Plane Plate Extensions

- **§ Vivaldi type flaired notch:** variant of the Balanced Antipodal Vivaldi [Langley, et. al., *IEE Proceedings-Microwave Antennas and Propagation*, Vol. 143, No. 2, April 1996]
- § Three layers of conductor: upper and lower flair together, middle flairs in opposite direction; layers separated with low dielectric foam
- S Naturally fed with stripline or coax or other unbalanced line
- S Very wide bandwidth achieved with scaled "standard" design but that resulted in undesirably large element
- Single-element design required substantial additional modification when arrayed to remove resonance introduced by mutual coupling

UNCLASSIFIED FOPEN Reconnaissance, Surveillance, Tracking and Engagement Radar (FORESTER)

Objective: <u>Persistent</u> FOPEN GMTI radar surveillance to deny <u>dismounted troops</u> the ability to maneuver under foliage

Description:

- **§**UHF GMTI/SAR radar to detect and track moving personnel and vehicles hidden or obscured by foliage.
- System is designed for the A160 Hummingbird (helicopter UAV)

Capabilities:

- Select moving dismounts and vehicles <u>under foliage</u>
- Synthetic Aperture Radar mode
- Selectronically steer beam to search a 90 degree sector
- Seal-time onboard processing

Status:

Completed FORESTER/Black Hawk testingCompleted FORESTER/ A160T testing

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- § L-Band
- **§** Cylindrical Array
 - § Electronically scanned in azimuth – "Wullenweber" architecture
 - Solution
 Solution
 Solution
- S Dual receive elevation beams (each with delta azimuth)
- § Receive elevation beams formed with Blass Matrix

UNCLASSIFIED LCMR (V)3 Antenna Column

- **§** Linear array of six dipoles
 - Forms two simultaneous elevation receive beams for amplitude only monopulse
 - Forms single transmit sum beam
 - Dual output power amplifier module provides several stages of amplification

Array is comprised of 24 antenna columns (144 elements) arranged in a cylinder configuration. 8 columns used together to form a beam

Multi-Mission Radar (MMR)

§ Ground based radar for

- § Air Surveillance
- § Counter Battery
- § Fire Control
- § Air Traffic Control
- § S-Band

RDEED

§ Planar Array

- § Element level T/R
- S Phase steering in azimuth and elevation (+/- 45 degrees azimuth and +/-33 degrees elevation)
- S Rotates 360 degrees mechanically at up to 30rpm
- § Analog beamforming
 - **§** Single transmit Sum beam
 - S Three stacked beams in elevation each with delta azimuth

MMR

MMR system with Radome removed MMR Octapak laying against the array face

MMR Octapak

Enhanced AN/TPQ-36 (EQ36)

- **§**C-130 Transportable; Highly-Mobile
- § Q-36/37 Performance in Small Footprint
- **§** Soldier "Friendly" for Protection & Ergonomics
- §72-Hour Operation with Mission Essential Configuration
- §IFPC Compatible

RDEFI

§ Linked to AFATDS & FAADC2

Mission Essential Group (MEG)

Operations Control Shelter (OCS)

- Detect, Classify, Track Incoming Projectiles Mortars, Artillery (Cannon), Rockets
- 90° and 360° Capable
- Emplacement 5 Minutes, Displacement 2 Minutes; Auto Levels and Self-Align
- Miltope Laptop Control Remote Control Display Unit (1 KM Range)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Low-Risk Solution

Existing Radars

AN/TPQ-36

AN/TPQ-37

Solid-State

- § Electronic Steering 90° AZ. 65° EL
- § Mechanical 360° Azimuth Rotator
- § Flexible Radar Resource Management, Waveforms, and Processing

Significantly Upgrades Army Counterfire Target Acquisition Capability

§ Range and Accuracy § Operate in Severe Clutter § High Probability of Location (>90%) § Modern, Modular Design § 360° Counterfire § HMMWV-Based

Prototype Re-Use

- Radar System Design
- CTA Algorithm
- Antenna RF Architecture
- Digital Signal Processor Architecture
- **§** Antenna Structure Optimized for Producibility
- § Platform Optimized for Ease of Emplacement
- **§** Signal Processor Optimized for Maintainability and Ruggedization
- § Automated Leveling

Ruggedized, Producible, Supportable Antenna Transceiver Group (ATG) 90° and 360° CTA Pedestal Electronics Easy Access and Replace

The Army's

EQ-36

Antenna Group Levels Easily and Quickly Using Automated Leveling

Automatic ATG Leveling

Operations Control Shelter

Interoperable with Army Fire **Control Systems**

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM Army Digital Array Radar Program (Army DAR)

- § Develop the technology and production building blocks for Digital Array Radars
- § Develop a generic platform on which future advanced, low cost radars will be built
- § Devise techniques for low cost integration of the active components with radiating panel
- **§** Utilize efficient technologies to minimize power and thermal overhead
- § Use modern digital transceiver technology for system for system-wide flexibility

Digital arrays offer significant improvements in the detection and tracking of challenging targets and overall radar system flexibility

???

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.