Multifunction Phased Array Radar (MPAR)

FAA Research Initiatives

Presented to: MPAR Symposium II

By: James Williams – Director, Systems Engineering and Safety

Date:17 November 2009

Research Accomplishments

- Completed development, evaluation and characterization of prototype T/R module using custom chip-set from M/A-COM
- Completed design for 64-element front panel array
- Completed development of a dual-polarization strategy and architecture
- Completed initial T/R module Technical Requirements Document
- Updated cost model

Research Accomplishments (cont'd)

- Completed study on MPAR's impact (rapid update rate) to storm Growth & Decay algorithms (CIWS). Findings:
 - Faster update of radar data can increase the accuracy of the growth and decay trends, which could, in turn, improve the quality of the precipitation and echo tops forecasts.
 - A higher time resolution of the echo tops field could aid route availability planning and help improve turbulence forecast, and storm motion may be better characterized as well.

FAA MPAR Research Initiatives 17 November 2009

Research Accomplishments (cont'd)

• ADS-B back-up surveillance study completed

- Report delivered containing initial requirements

- Initial findings indicate MPAR can achieve ADS-B (NAC_p = 7) surveillance accuracy
 - 600' surveillance resolution with 3 or 6 second update rate.

* NAC_p – Navigation Accuracy Category - Position

Research Accomplishments (cont'd)

- Completed development and implementation of Target Tracker function on the NWRT Track Processor (TP)
 - Funded by DHS through NSSL
 - Completed all hardware and software development and integration
 - Includes rehost of DSP onto multi-core open architecture
 - Provides integrated track/weather display

Research Plans

- Complete fabrication of 64 element front panel (Lincoln Laboratory and M/A-COM)
- Characterize and evaluate prototype panel (LL and M/A-COM, independent assessment)

* Prototype Panel Demonstrator

- Update detailed cost model for low cost panel architecture
- Complete design for panel back-end (power, beam controller, interface, etc.)

Research Plans (cont'd)

Radar Network Analysis

- FAA's Aviation Weather Office (AWO) is funding a task/study for the "right-sizing" of weather sensor networks.
- Ground based radar is one of the study areas and will explore network coverage.
- Gap-filler concept analysis and NextGen integration are candidate focus areas.

Research Plans (cont'd)

Mode-S Replacement Study

- Define appropriate functional performance requirements
- Evaluate high level network/sensor configuration alternatives
- Assess possible performance improvements
- Investigate candidate PAR architectures that can satisfy performance specifications

Research Plans (cont'd)

Technology Assessment Program

- Multi-agency program to engage industry on technology advancements and cost
 - FAA, NSSL and OFCM
- Currently refining project approach and acquisition strategy
- Current approach is a multi-phase acquisition
 - Funded Architecture/Cost white papers
 - Down-select for development of technology demonstrators
- Planned for FY11
- Program followed by full scale Prototype Development

Summary

• FAA research initiatives:

- Produced low cost T/R modules and 64 element panel
- Analyzed the affect of faster update data on weather algorithms
- Determined MPAR can support the back-up requirements of ADS-B
- Continuing research to investigate MPAR as a viable solution to FAA mission needs.

