

Joint Center for Satellite Data Assimilation Updates and Overview

Adapted from presentation by Tom Auligné, Director, JCSDA

On-Going JCSDA Successes

- Community Radiative Transfer Model (CRTM) (Rel 2.3.0 with cloud fraction)
- More unified Data Assimilation -> Support for operational/research community
- Accelerated use of research and operational satellites into operational models
 - AIRS -> IASI -> NPP -> preparation for JPSS and GOES-R
- Contributions to continuous improvement to NWP model performance

JCSDA Management Structure

NASA, NOAA, Department of the Navy, and Department of the Air Force

Management Oversight Board

NOAA / NWS / NCEP (Lapenta (Chair))

NASA/GSFC/Earth Sciences Division (Pawson)

NOAA / NESDIS / STAR (Kalb)

NOAA / OAR (Atlas)

Dept. of the Air Force / Air Force Director of Weather (Col. Gremillion)

Dept. of the Navy / N84 and NRL (McCarren and Hansen)

Executive Team

Director (Auligne) *

Partner Associate Directors

(Baker, Gelaro, Zapotocny, Benjamin, Derber, Weng)

Chief Administrative Officer (Yoe)

Science Steering Committee

Advisory Panel

Science priorities: Radiative Transfer Modeling (CRTM), new instruments, clouds and precipitation, land surface, ocean, atmospheric composition.

Strategic Goals

- 1. Expand capabilities in assimilating satellite sensors
- 2. Spearhead a community data assimilation initiative
- 3. Address scientific frontiers to optimize the use of satellite data
- 4. Deliver new and improved tools to support observing system impact assessments
- 5. Foster improved organizational management, interagency coordination and outreach strategies

1) Prioritized New Satellites and Sensor

New Sensors Data Assimilation:

(new QC, error optimization, impact assessment on NOAA forecast systems)

JPSS1 – ATMS and CrIS

GOES-R – ABI (AMV winds and radiances)

COSMIC 2

HIMAWARI-8 AHI (Dry run for GOES-R ABI)

GPM /GMI

Megha-Tropiques SAPHIR (WV Sounder)

ISS-RAPIDSCAT (Scatterometer)

GCOMW AMSR2

SMAP

JASON 3

(Launch date NLT Q2 FY17)

(Launch date October 2016)

(Launch date Q2 FY17)

Existing Sensors optimization:

(QC, Surface-sensitive channels assimilation, pre-processing, dynamic emissivity, etc)

ATMS, SSMIS, AMSU, MHS

2) Joint Effort for Data assimilation Integratio (JEDI)

GOALS

- 1. Nation unified next-generation Data Assimilation system
- 2. Increase R2O transition rate from academic community
- 3. Increase science productivity and code performance

STRATEGY

- 1. Modular code for flexibility, robustness and optimization
- 2. Mutualize model-agnostic components across
 - Applications (atmosphere, ocean, strongly coupled, etc.)
 - Models & Grids (operational/research, regional/global models)
 - Observations (past, current and future)
- 3. Collective reduction of entropy

D Ε В Other DASs C ••• Research C Generic Oper В C C В В C Α Α Ε В D В Ε D C **DART GSI**

MULTI-LEVEL COMMUNITY REPOSITORY

Obs. Pre-processor

- Reading
- Data selection
 - Basic QC

DATA ASSIMILATION COMPONENTS

for Atmosphere, Ocean, Waves, Sea-ice, Land, Aerosols, Chemistry, Hydrology, Ionosphere

CODBMS: Community Observation Data Base Management System

Observations

CODBMS (obs + model equivalent)

& Obs Error

Solver

- Variational/EnKF
- Hybrid

Analysis Increments

- Model Initial Conditions
- Observation Impact (OSE, OSSE)
- Situational awareness
- Reanalysis

- Verification
- Model post-proc.
- Cal/Val, Monitoring
- Retrievals
- Simulated Obs.

3) Scientific Frontiers for this year

- Improve the Community Radiative Transfer Model (CRTM)
 transmittance calculation, cloud and aerosol optical properties, and
 software efficiency
- Assimilation of all-sky satellite radiances (esp. cloud-affected and over land)
- Improve balance in analysis (at all scales, better use of ensemble information)

4) Experimental Design

- Time period: 3-month DJF 2014-15 (planned JJA 2014) 00UTC & 06UTC cycles
- Verification: 24h forecast against self analysis
- Metric: global total dry energy (surface-100hPa)
- Adjoint: dry plus moist physics, as available
- Ensemble: flow-following localization
- Approach: centrally collect data without aggregation
- Participating Centers: EMC, NRL, GMAO, Met Office, JMA

Results shown here are VERY preliminary

(only global summary plots of impact at 00UTC will be shown)

Fractional Impact at 00UTC: Satellite Radiances

Fractional Impact at 00UTC: Other Observations

5) JCSDA: Looking ahead

- Metrics of success = added value (faster, better, cheaper, safer)
 of doing work jointly via the JCSDA
- Scope of activities and role of JCSDA
 - Collaborative, inter-dependent activities
 - Annual Operating Plan
- Toward new Terms of Operations
 - Annual timeline

Tasking Prioritizing Budgeting Execution Oversight Reporting Review

Project structure

Planned Project Structure

Project #1: CRTM

- Science Project Manager and Software Engineer
- Draft work plan under construction

Project #2: New and Improved Observations

- Prioritized list of new sensors + Readiness action plans
- Cloud-and-precipitation-affected radiances
- Radiances over land

Project #3: JEDI

- Science Project Manager and Software Engineer
- Unified Forward Operator (atmosphere, ocean, sea-ice, etc)
- JCSDA member of GSI/EnKF DA Review Committee

Project #4: Observing System Impact Assessment

- JCSDA Observing System Assessment Standing Capability (JOSASC)
- Commercial Weather Data Pilot (CWDP) project

Conclusion

- JCSDA = multi-agency, distributed center enabling partners to share efforts and results to accelerate, enhance, and expand use of satellite data in operational prediction systems
- Keys to Success Include
 - Development and adoption of Common Tools (CRTM)
 - R2O supported by O2R infrastructure (R2O2R2....)
 - Effective communication b/w partners, R&O communities
- Future Outlook
 - Exploring means to be more collaborative in planning and execution
 - Plan to hire JCSDA Executive Officer
 - Starting July 2016, JCSDA Director in Boulder, CO

