

NOAA

NWS Office of Observations

May 23, 2018

2018 Observational Data Workshop

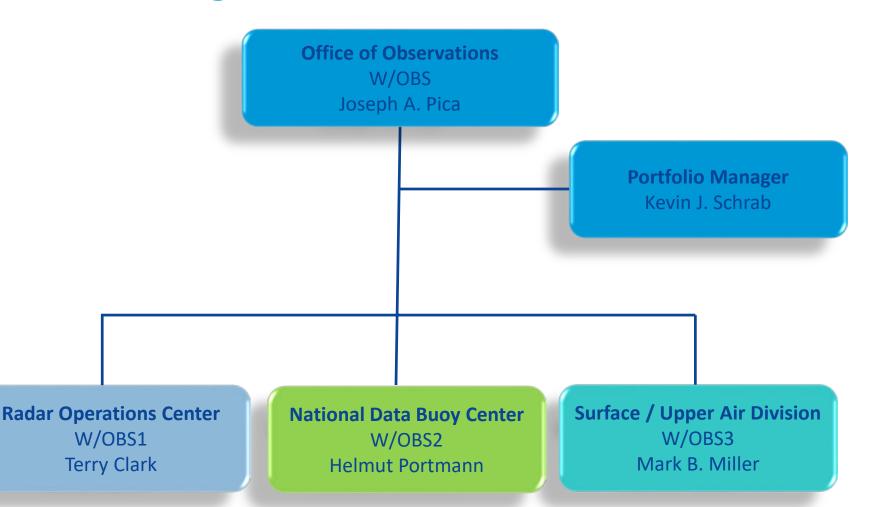
Mark B. Miller, Director Surface & Upper Air Division

The mission of the NWS begins with us!

Overview

- **Division Organization**
- **Programs and Data Buys**
- **Current Initiatives and Updates**
 - **ASOS**
 - **Upper Air**
 - **ABO**

Portfolio Organization



W/OBS1

Terry Clark

Division Mission

Manage end-to-end lifecycle of current and future surface and upper air observational systems or platforms through:

- Program ManagementAcquisition Management
- Systems Engineering
- Engineering Maintenance
- Repair and replacement
- Logistics
- Configuration Management
- Scientific/technological reviews of new technologies
- Quality control of data

Division Organization

K\$

~70 contractors

• Three locations

Surface & Upper Air
Division
Mark B. Miller

Administrative Officer Tonjania Temple Program Management
Office

Program

Management Branch

Mark B. Miller

(acting)

Services Branch
Dr Tom Day

Evaluation BranchNeal DiPasquale

Sterling Field Support Center **Logistics Branch**Victor Marsh

National
Logistics Support
& National
Reconditioning
Centers

Programs and Data Buys

- Automated Surface Observing (ASOS)
- Radiosondes (U.S. and Caribbean network)
- Cooperative Observer Program (COOP)
- Voluntary Observing Shop (VOS)
- Meteorological Assimilation Data Ingest System (MADIS) (along with DISS)

DATA BUYS/LEVERAGE

- Mesonet
- Aircraft-Based Obs
- Lightning
- GPS-Met
- MArine Reporting Stations
- CoCoRaHS
- ...many others that we leverage for free

Current Initiatives and Updates

- Radiosonde Frequency Migration Project (RFMP)
- Aircraft-based Observations
- Caribbean Hurricane Upper Air System (CHUAS)

ASOS SLEP Background

- The ASOS mission and required capabilities have not changed.
- Obsolescence and /or un-supportability of various fielded components and sensors has necessitated replacements and upgrades. Driving factors were as follows:
 - Initial sustainability analysis projects ASOS processing will begin to reach end of service life starting in 2019.
 - Legacy ASOS software and operating system cannot support new sensor upgrades and IT security requirements.
 - Costly and outdated telecommunications infrastructure contributes to interoperability problems with newer technologies and cannot support emerging data frequency requirements.
- ASOS SLEP will extend service life to 2040.
- Components of ASOS SLEP include:
 - ACU/DCP Hardware and Software redesign
 - **Updated ASOS Telecommunications**

ASOS SLEP

Responsibilities:

- FAA responsible for software development
- NWS responsible for hardware development and procurement

Timelines:

- Expecting to enter into System Testing later in FY18
- Award hardware production contract in FY19
- Begin OT&E in FY19-20
- Establishing communications options and timelines

Upper Air Initiatives

- NWS transitioning current operating frequency from its 92 upper-air sites to new frequency (403MHz)
 - Required to eliminate interference from GOES satellite receivers operating in sold-off frequency
 - GOES moving into current radiosonde frequency
- The transition began in September 2016 and will be completed by December 2022
 - Initial "Transitional Radiosonde Observing System" employed near-term before GOES-R/16 launch
 - Will be replaced by long-term solution(s)
- Recapitalizing network with a 75/25 mix of manual launch and auto-launch systems

Autolaunchers

- Initiated demonstration project in Alaska to establish the concepts for operating and maintaining autolaunchers
 - Radiosondes and system evaluated in 2016
 - Kodiak autolauncher began operating in Oct 17
 - Fairbanks autolauncher began operating in Apr 18
- Currently gathering data and conducting analyses to identify which 8 sites outside Alaska will receive additional autolaunchers (approximately 25% of the total national network includes the 13 Alaska sites)

Alaska Autolauncher Schedule

2018	2019	2020
Annette	King Salmon	Kotzebue
Yakutat	Bethel	Nome
Barrow *	McGrath	
St Paul	Cold Bay	
*already installed by DOE; shared with NWS by agreement	Anchorage	

Manual Radiosonde Launching

- Solicitation to be released end of May 2018
- Testing and evaluation of radiosondes and systems conducted through 2019
- Contract award and completion of deployment through 2022

Hi-Res BUFR from CHUAS

- Cooperative Hurricane Upper Air Station (CHUAS) network in the Caribbean
 - Currently UA Data is transmitted via host country internet provider as an email to the NWS eMail Data Input System (EDIS).
 - The GRAW Radiosonde System can produce the Hi-Res BUFR file to be transmitted.
 - EDIS has the capability to accept the Hi-Res BUFR binary file as an attachment
- NCEP does not have the capability to accept data binary files transmitted via EDIS att
- Mitigation: Evaluation Branch working with EDIS and Data Management to resolve issue, including IT Security. Schedule TBD

Hi-Res BUFR from Micronesia

- Poor communications bandwidth within the Micronesia host islands
- Currently using a FAA low bandwidth circuit (similar to NWS EDIS) to transmit UA Data to Guam's AWIPS
- AWIPS not available in Micronesia to ingest UA Data
- Concerns on IT Security since data being received from host country
- Mitigation: Local Micronesia TELCO installing higher bandwidth circuits to handle UA Data, therefore making possible Hi-Res BUFR Data to reach Guam's AWIPS
 - Initial data flow testing shows promising results
 - Continued testing underway. Installation schedule TBD based on local Micronesia TELCO

Hi-Res BUFR from TROS

- Transitional Radiosonde Observing System (TROS)
 - A Commercial off the Shelf (COTS) system manufactured by Lockheed Martin in the 403 MHz band.
 - Procured as a rapid temporary solution to avoid radio frequency interference at the GOES-R receiving ground stations.
 - System was procured as is COTS.
- System can produce Hi-Res BUFR but currently not in correct header format that can be accepted in the Local Data Acquisition and Dissemination (LDAD) system
- Mitigation: TROS will be replaced by long-term solutions which includes the requirement of Hi-Res BUFR in the correct LDAD header format

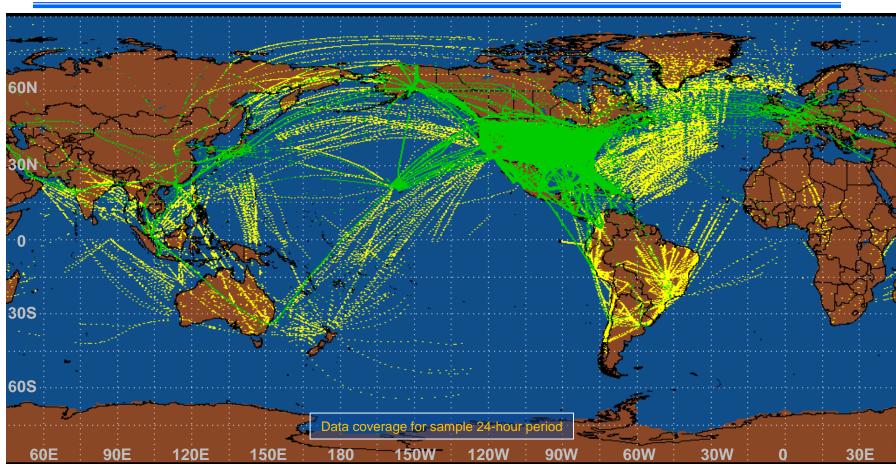
Aircraft Based Observations

- FAA-NOAA Joint MDCRS Contract
 - Wind and temperature data from ~3500 aircraft
 - All major US airlines contributing
 - ~3M soundings per year on ascent/descent, plus en route data
 - Global reach but concentrated over the CONUS
- NOAA Water Vapor Sensor System (WVSS-II) Contracts
 - ~140 aircraft instrumented with a high-quality moisture sensor providing moisture soundings (in addition to T and V) daily near all major hubs serviced by Southwest and UPS B737s

Mesonet TAMDAR

- ~180 regional carrier aircraft (small, short-haul) providing T, v, and RH obs. from major hubs and regional airports
- ~500K soundings per year (or 1400 per day) globally

Large Increase in MDCRS Data Beginning in 2014



- MDCRS added with "Sandy" funds
- ~500 soundings per day over South America (heretofore data void) from LATAM Airlines
- ADS-C en route data beyond the ACARS/VHF comms pathway (heretofore comms void)

WMO Global Data Centre

- Meteorological Assimilation Data Ingest System (MADIS)
 - Operational system within NCO to ingest and disseminate many types of non-federal (e.g., commercial) observational sources
 - Hosts amdar.noaa.gov, which provides visualization and analysis tools (e.g., Skew-T's)
 - Real-time and archived data available in NETCDF; latency of 5 minutes
 - MDCRS data restricted to WMO member organizations and contributing airlines within 48 hours of observation time
 - TAMDAR data restricted to NOAA-only due to contract constraints
- MADIS → Global Data Centre
 - MADIS now designated as the official "Global Data Centre" for ABO
 - All MDCRS/AMDAR data from NOAA/NWS *and* from airlines/WMO members around the globe that contribute to the Global AMDAR Programme
 - Portal to be hosted and maintained by WMO: gdc-abo.wmo.int
 - Enhancements to MADIS underway to ensure contractual data rights and access
 - Facilitates ease of access and display capabilities for those outside GTS framework

WMO Lead Centre for ABO Monitoring

- Environmental Modeling Center (EMC) has acted as a Lead Centre for ABO Monitoring for years
- ABOs are the most abundant form of conventional meteorological data
 - ~ 850K AMDAR reports now received daily a three-fold increase since 2013
- Along with a planned, formal designation of NCEP/EMC as an ABO Lead Centre, the WMO Expert Team on ABO has recommended measures to more effectively monitor and QC expansive ABO datasets:
 - Daily monitoring reports and 10-day quality reports recommended to supplement current monthly reporting
 - Updated/expanded metadata of reporting aircraft
 - Development of an incident management system to handle ABO errors/issues
 - Aggregate/archive data monitoring reports developed by AMDAR Programme participants
 - Compile a seven-month store of ABO data with quality statistics computed by multiple NWP centers – Joint effort with WMO Task Team on WIGOS Data Quality Monitoring Systems
 - Recommended measures are estimated to become enacted by 2020

The Future

- Current capabilities "steady as she goes"
 - Refresh new/updated/upgraded sensing on existing platforms and infrastructure
 - No new deployments on the horizon for sensing and infrastructure on a national level (e.g., LIDAR network)
- Foresee increase in data leveraging to fill data gaps as new technologies come to fruition, for example:
 - Persistent balloons (e.g., Google Loon)
 - **UAVs**
 - Crowd-sourced data

