COMMITTEE ON RESEARCH AND INNOVATION
INITIAL WILDFIRE WORKSHOP

1 April 2022

Workshop Organizers: David Turner (NOAA), Lesley Ott (NASA), Olga Tweedy (DoE), Paul Steblein (USGS), Marc Stieglitz (NSF), Toral Patel-Weynand (USFS), Gary Geernaert (DOE), Stan Benjamin (NOAA)
The organizers of ICAMS Wildfire Workshop are committed to providing safe, welcoming, and productive environments in the field and the lab, and at meetings and conferences, and have adopted the American Geophysical Union Scientific Code of Conduct. The Code of Conduct rejects discrimination and harassment by any means, based on factors such as ethnic or national origin, race, religion, citizenship, language, political or other opinion, sex, gender identity, sexual orientation, disability, physical appearance, age, or economic class. This Code also includes information on expected behavior, unacceptable behavior, consequences, and how to report unacceptable behavior.

If you have any concerns or need an ally contact: David Turner, Lesley Ott, Olga Tweedy, Paul Steblein, Marc Stieglitz, Gary Geernaert, or Stan Benjamin.
Introductory Remarks

Stan Benjamin (NOAA), Gary Geernaert (DOE)
Co-Chairs, ICAMS Committee on Research and Innovation

- Learn from each other.
- What are the gaps?
- What are our opportunities?
1200 (Eastern Time) Welcome and Introductory Remarks
 Stan Benjamin (NOAA), Gary Geernaert (DoE)

1210 Remarks from Scott Weaver (OSTP),
 Director, Interagency Meteorological Coordination Office (IMCO)

1220 Agency Presentations (15 Minutes Each)
 - USFS, USGS, NOAA, NASA, DoE, NSF

1350 Break Time

1400 Panel Discussion
 Representatives from each of the six agencies

1445 Wrap Up
 Final Thoughts
 Next Workshop
ICAMS Overview

Scott Weaver

Executive Director, Interagency Meteorological Coordination Office

Office of Science and Technology Policy (OSTP)/ICAMS
Executive Office of the President
ICAMS: Ensuring U.S. Global Leadership in Meteorological Services from Local Weather to Global Climate
WHAT IS ICAMS?

ICAMS is the formal mechanism by which all relevant Federal departments and agencies coordinate implementation of policy and practices to ensure U.S. global leadership in the meteorological services enterprise.

A 10-year charter was put in place on July 31st 2020 after a year of planning and robust engagement with 50+ leaders across ICAMS Federal departments and agencies.
ICAMS fulfills the mandate of the 2017 Weather Research and Forecasting Innovation Act by fostering collaboration on “meteorological services via an Earth system approach, providing societal benefits with information spanning local weather to global climate.”

WHY IS ICAMS NEEDED?

SEC. 402. INTERAGENCY WEATHER RESEARCH AND FORECAST INNOVATION COORDINATION. (a) ESTABLISHMENT.—The Director of the Office of Science and Technology Policy shall establish an Interagency Committee for Advancing Weather Services to improve coordination of relevant weather research and forecast innovation activities across the Federal Government. The Interagency Committee shall—

(1) include participation by the National Aeronautics and Space Administration, the Federal Aviation Administration, National Oceanic and Atmospheric Administration and its constituent elements, the National Science Foundation, and such other agencies involved in weather forecasting research as the President determines are appropriate;
(2) identify and prioritize top forecast needs and coordinate those needs against budget requests and program initiatives across participating offices and agencies; and
(3) share information regarding operational needs and forecasting improvements across relevant agencies.

(b) CO-CHAIR.—The Federal Coordinator for Meteorology shall serve as a co-chair of this panel.

(c) FURTHER COORDINATION.—The Director of the Office of Science and Technology Policy shall take such other steps as are necessary to coordinate the activities of the Federal Government, President, Determination, with those of the United States weather industry, State governments, emergency managers, and academic researchers.
Meteorological Disasters are Increasing

United States Billion-Dollar Disaster Events 1980-2021 (CPI-Adjusted)

- Drought Count
- Flooding Count
- Freeze Count
- Severe Storm Count
- Tropical Cyclone Count
- Winter Storm Count
- Combined Disaster Cost
- Costs 95% CI
- 5-Year Avg Costs

15 Wildfire Events
4 Wildfire Events
The new ICAMS coordination structure aims to simplify and improve coordination.

ICAMS Structure

Interagency Council for Advancing Meteorological Services (ICAMS)
Co-chairs:
Director, Office of Science and Technology Policy
NOAA Under Secretary/Federal Coordinator of Meteorology

Other Relevant Federal Organizations/Groups

Interagency Meteorological Coordination Office (IMCO)
Executive Director
Deputy Director
Staff

NSTC

NSTC Executive Director

Committee on Observational Systems
Subgroups

Committee on Cyber, Facilities and Infrastructure
Subgroups

Committee on Services
Subgroups

Committee on Research and Innovation
Subgroups
ICAMS 1.0 STRUCTURE

Committees on Observational Systems
- WG on Non-Governmental Data
- SC on Space-Based Observations
 - WG on Airborne Observations
 - WG on Aerial Reconnaissance Equipment
 - WG on Future Radar Systems
 - WG on NEXRAD Radar
- SC on Surface and Sub-Surface Observations
 - WG on Satellite Telemetry

Committees on Cyber, Facilities, & Infrastructure
- SC on Earth System Data Infrastructure and Stewardship
- SC on Operational Processing Centers
 - WG on Cooperative Support and Backup
 - WG on Centralized Communications Management
 - WG on Observational Data

Committees on Services
- WG on Environmental Services supporting Social Equity
- SC on Weather
 - IT on Disaster Impact Assessments & Plans
 - WG on Decision Support Services
- SC on Water
 - WG on Inland Water Services
 - WG on Coastal Water Services
 - WG on Ocean Services
- SC on Climate
 - WG on Climate Information Services
 - WG on Climate Adaptation Services
 - WG on Climate Mitigation Services
- SC on Atmospheric Composition
 - WG on Atmospheric Transport, Dispersion & Volcanic Ash
 - WG on Wildfires, Controlled Burns, and other Sources Services

Committees on Research & Innovation
- SC on Earth System Modeling & Prediction
 - IT on Common Model Architecture
 - IT on Coupled Global Modeling
 - IT on High Performance Computing
- SC on Data Assimilation and Observation Strategy
- SC on Application of Weather and Climate Prediction to Decision Making
- SC on Earth Systems ML/Al and Advanced Technologies

Joint Action Groups
- Integrated Observations for Meteorological Extremes and Regional Information
- Earth System Predictability
- Transition of R&D into Services
- Space Weather Observations, Services and Research
The following set of principles guides the work of ICAMS:

- **The meteorological enterprise is a national asset** for ensuring personal and community safety, economic success, national security, and education;
- Individuals, and their creativity and dedication, are the greatest asset of the U.S. meteorological enterprise;
- **Effective cross-agency coordination and external engagement are critical to success**;
- Success for the individuals and organizations is achieved via success of the enterprise as a whole;
- **Efficiency is foundational** to the stewardship of taxpayer dollars;
- Research, operations, and applications are mutually beneficial, mutually reinforcing, and equally important for realizing ICAMS goals;
- **Open debate and a diversity of opinions promote excellence and teamwork**;
- Excellence results in quality and promotes public trust.
Agency Presentations
USDA Forest Service Wildfire Crisis
Initial ICAMS Wildfire Workshop

Toral Patel-Weynand
Acting Associate Deputy Chief
USDA Forest Service Research and Development
USDA Forest Service Wildfire Crisis Strategy (WCS)

- Issued in January 2021
- Science-informed plan to prioritize fuel management actions at the necessary scale over the next ten years
 - Treat up to an additional 20 million acres on the National Forest System
 - Treat up to an additional 30 million acres of other Federal, Tribal, State, and private lands
 - Long-term maintenance beyond 10 years
- The IIJA supports some of this work
USDA Forest Service Wildfire Crisis Strategy (WCS)

- Three pillars of the National Cohesive Wildland Fire Management Strategy
 - Fire adapted communities
 - Fire resilient landscapes
 - Safe and effective wildland fire response

- R&D research supports all of these pillars
 - Threats to our communities emerge because of landscape fuel conditions in the wildlands, extreme weather conditions, and vulnerable communities

Calkin et al. 2014
Fire adapted communities

- Community vulnerability
 - Building materials (Forest Products Laboratory)
 - Social and economic risk factors
- Community exposure
 - Firesheds – 250,000 acre planning units – are delineated based on millions of wildfire simulations using R&D-developed tools and technology.
- Wildfire simulations require meteorological data to predict fire activity based on historical climate-fire relationships
 - Historical fire weather available from Weather Information Management System (WIMS) and FireFamilyPlus
Fire resilient landscapes

- Landscape fuel conditions and climate drive fire exposure
 - Firesheds quantify exposure to communities from fires that start elsewhere.

- Priority landscapes have been identified
 - Interior Pacific Northwest
 - Sierra Nevada Range in California
 - Front Range in Colorado
 - Southwest (AZ and NM)
Safe and Effective Wildland Fire Management Response

- Potential Operational Delineations (PODs) Framework
 - Spatial containers called “Strategic Response Zones” for wildfire response objectives
 - Determined based on Potential Control Locations

- PODs are used for
 - Interior Pacific Northwest
 - Sierra Nevada Range in California
 - Front Range in Colorado
 - Southwest (AZ and NM)
Wildfire Risk Reduction Infrastructure Team (WRRIT)

National Roundtables
• Covering each Region, through the end of May

Incorporation of best available science
• Integration of biophysical and social sciences
• Understanding of local contexts
• Improved understanding of smoke dynamics
• Shareable platforms, databases and datasets
• Leveraging Joint Fire Sciences Program
Questions?

Toral Patel-Weynand
Toral.patel-weynand@usda.gov
ICAMS Fire Workshop
April 1, 2022

USGS
Wildland Fire science

Paul Steblein
Wildland Fire Science Coordinator

Expert Assist today:
• Brian Ebel, Water Mission Area
• Kurtis Nelson, EROS
• J. Kevin Hiers, Deputy Fire Science Coordinator

For additional information:
www.usgs.gov/fire
USGS Fire Science Fact Sheet
https://doi.org/10.3133/fs20193025
12-year compendium of fire science at USGS
https://doi.org/10.3133/ofr-20191002
USGS Wildland Fire Science Strategic Plan
https://doi.org/10.3133/cir1471
Firelight = USGS Fire Science Newsletter
USGS Fire Science Scope

Geographic
- National
- DOI land – about 20% land surface
- Local projects

Interdisciplinary
- All Mission Areas – Ecosystems, Natural Hazards, Water, Core Science, Energy & Minerals

Thematic – very diverse
- Fire History & Management
- Fire Ecology & Recovery
- Post-fire Risks
- Geospatial, Imagery & Tech

Science Organization & Results
- 8,000 scientists & staff
- >200 scientists in very active fire sci CoP
USGS Wildland fire science strategic plan: 2021-2026

Priority 1: Produce state-of-the-art, actionable fire science
- **Goal 1:** Improve understanding of the impacts of climate changes and other ecosystem stressors, and their synergistic interactions, on fire behavior, fire risk, and fire effects in natural systems and human communities.
- **Goal 2:** Gain a better understanding of the relationships of fire and fire management to biodiversity conservation, ecosystem resilience, and post-fire recovery.
- **Goal 3:** Conduct science to help protect human lives, livelihoods, property, and infrastructure.
- **Goal 4:** Develop state-of-the-art tools and decision-support systems that enable land, fire, and emergency-managing bureaus and partners to obtain essential fire information.

Priority 2: Engage stakeholders in science production

Priority 3: Effectively communicate USGS fire science capacity, products, and information

Priority 4: Enhance USGS organizational structure and advance support for fire science

USGS Wildland Fire Science Strategic Plan
https://doi.org/10.3133/cir1471
USGS Fire Science

Wildland Fire Threat, Hazard, Risk & Mitigation

1. Advanced Integrated Fire Science
Integration of Fire Behavior with Post-fire & Ecosystem Processes

Current Fuels & Vegetation
- Invasive Species
- Wildfire
- Insects
- Disease

Fuel Treatments
- RxFire
- Fuel Breaks
- Mech Trt
- Inv Spp Trt

Other Data & Models
- Weather/climate
- Terrain

Predicted & Observed Post-fire Hazards
- Input to decision support & monitoring system
 - Debris flow, water flow/quality, sedimentation
 - Mitigation options
- Couple with other ecosystem & socioeconomic models
 - Vegetation, wildlife habitat, invasive spp, health & safety, infrastructure

Predicted & Observed Fire Character
- Input to decision support systems
- Couple with post-fire hazards
- Couple with other models (carbon, emissions)

Critical Role of Partnerships
- Internal across disciplines
- With other agencies & programs
- Remote sensing, process research, modeling & application

Fire Monitoring
- Detection
- Perimeter mapping
- Intensity
- Burn severity

I. Advanced Integrated Fire Science
Advanced Integrated Fire Science
Conceptual Model
Fire behavior & post-fire risks

Concept application
• CO River Basin
• CA/WA Disasters

Ignition probabilities → Fire spread & behavior → Burn severity → Debris flow, Water quality, & Revegetation → Fire/Post-Fire Risk Decision making

Topography & Soils

Land-use / land-cover change, pre-fire management, and post-fire response

Vegetation & fuels

Weather

Climate Change

Other Factors
Catalog of Fire Science Scientists and Programs

Purpose of Data Call:
Compile wildland fire research capability from participating agencies meet the workshop goal - current agency activities and opportunities for collaboration

<table>
<thead>
<tr>
<th>Agency</th>
<th>Program</th>
<th>Description of Capability or Use</th>
<th>Science Phase</th>
<th>Fire Phase</th>
<th>Point of Contact</th>
<th>Link to doc or webpage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS</td>
<td>Core Science, EROS</td>
<td>The Fire Danger Forecasting Project focuses on research and development of digital map products suited for monitoring and forecasting fire potential within the conterminous U.S. The project maintains and operates an automated, daily production process which generates a suite of digital map products related to the forecasting of fire ignition and subsequent spread potential.</td>
<td>Application</td>
<td>Before</td>
<td>Kurtis Nelson, EROS Fire Science PI, knelson@usgs.gov</td>
<td>[Fire Danger Forecast</td>
<td>U.S. Geological Survey (usgs.gov)]</td>
</tr>
<tr>
<td>NIFC*</td>
<td>RAWS</td>
<td>RAWS - Remote Automatic Weather Stations - Nearly 2,200 interagency Remote Automatic Weather Stations (RAWS) strategically located throughout the United States. These stations monitor the weather and provide weather data that assists land management agencies with a variety of projects such as monitoring air quality, rating fire danger, and providing information for research applications.</td>
<td>Observation</td>
<td>Before, during, after</td>
<td>Nicole Finch, RAWS Program Manager, 208-387-5475, rawshelp@blm.gov</td>
<td>[Home</td>
<td>RAWS (nifc.gov)]</td>
</tr>
</tbody>
</table>
What science phase(s) are associated with your work?

- Observations: 47
- Process-oriented Research: 34
- Modeling: 36
- Operational predictions and p...: 26
- Real-time aspects (e.g., remot...: 25
- Applications for operational use: 34
- Science management/leaders...: 18
What phase(s) of wildland fire best describe your work?

- Before a fire occurs: 26
- During a fire or fire response: 14
- After a fire occurs (post-fire): 58
Areas of fire science focus

- Carbon: 18
- Climate Change: 27
- Cultural Resources: 6
- Contaminants and Fire: 6
- Debris flow/landslides: 16
- Fire Effects: 33
- Fuel Treatments: 13
- Fire Prone Ecosystems: 17
- Human Dimensions: 12
- Integrated Fire Science: 9
- Invasive Species and Fire: 16
- Remote Sensing: 23
- Smoke/Emissions: 4
- Water Quality: 16
- Hydrology: 22
- Geospatial Data: 28
- Post Fire Risk: 19
- Wildland Fire Behavior: 2
- Wildland Urban Interface: 5
- Other: 12
USGS Fire Science Publications/Products 2006-2017

<table>
<thead>
<tr>
<th>Publications & Products</th>
<th>Before Fire</th>
<th>During Fire</th>
<th>After Fire</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire History & Management</td>
<td>144</td>
<td>4</td>
<td>124</td>
<td>272</td>
</tr>
<tr>
<td>Fire Effects & Recovery</td>
<td>157</td>
<td>2</td>
<td>237</td>
<td>396</td>
</tr>
<tr>
<td>Post Fire Risk</td>
<td>37</td>
<td>1</td>
<td>108</td>
<td>147</td>
</tr>
<tr>
<td>Geospatial & Imagery</td>
<td>53</td>
<td>6</td>
<td>104</td>
<td>163</td>
</tr>
<tr>
<td>Total</td>
<td>391</td>
<td>13</td>
<td>573</td>
<td></td>
</tr>
</tbody>
</table>

970 publications, linked and searchable https://doi.org/10.3133/ofr20191002

Average 81 peer-reviewed publications per year.
Summary:
Sample of USGS Science Resources to Support Management Before, During and After Fires

- Landfire - > 20 data products
 - https://www.landfire.gov/
- LCMAP – Land change monitoring, assessment & projection
 - https://www.usgs.gov/special-topics/lcmap
- National Map data
- Lidar 3DEP Data
 - https://www.usgs.gov/core-science-systems/ngp/3dep
- Landsat Data & Tools
- Fire Danger Forecast
- Wildland Fire Science Strategic Plan
 - https://doi.org/10.3133/cir1471
- 12-year compendium of fire science
 - https://doi.org/10.3133/ofr20191002
- Burn Severity Mapping, USGS/USFS
 - https://fsapps.nwcg.gov/mtbs/birch/requests/list
- Monitoring Trends in Burn Severity
 - https://www.mtbs.gov/
- Debris flow assessments:
- Streamgage Network:
- Hazard Data Distribution System – includes commercial satellite imagery (e.g., WorldView) obtained on fires:
 - https://hddsexplorer.usgs.gov/
- Invasive Species Maps
NOAA’s Wildland Fire Observations, Research and Services (FOReST)

Dave Turner
Global Systems Laboratory

22 March 2022
Charge from CoRI for this workshop

• To provide high-level overview of what NOAA is doing
 • Before the wildfire
 • During the wildfire
 • After the wildfire
• With an emphasis on
 • Observations
 • Process-oriented research
 • Modeling (across time / spatial scales)
 • Operational predictions and products
 • Applications, decision support systems, and social science
NOAA Science & Services

NOAA supports each phase of the fire lifecycle
Fire Weather Customers / Partners

Local

Geographic Areas

Regional

Geographic Area Coordination Centers

National

NGOs

Academia

Media

Research Consortias
Meaningful Forecast Information

Research: science and technology development

Operations: Forecasters using and communicating information

Decision Support: Informing decisions based on the weather information provided
Current Operational Coordination: Forecast Services
NOAA Satellites for Fire Information

Our mission is to provide secure and timely access to global environmental data and information from satellites and other sources to both promote and protect the Nation's environment, security, economy, and quality of life.

Our vision is to expand the understanding of our dynamic planet as the trusted source of environmental data.

JPSS Program – Polar orbiting GOES-R Series - Geostationary GOES-R Series - Imager JPSS Series - Polar orbiting GOES-R Series – Lightning mapper

Pre fire conditions

Post fire conditions
Demonstration: Automated early detection of Kincaid fire (Napa, CA) using 1 minute GOES-R data

Above: Artificial intelligence and machine learning algorithms are being developed to detect fires earlier

March 7, 2017 - GOES-16 Oklahoma, Kansas and Texas Fires

“The greatest and most urgent demand for satellite data by the wildland fire community (including local, state, federal, and commercial entities) is related to the provision of timely detection and notification of newly ignited wildfires within critical fire environments that support extreme fire behavior.” (2020 NWCG SDTT, p. 10)
Research to Improve Understanding and Prediction

Field Studies

Satellite Observations

Advanced Forecast Systems and Decision Support Tools

Observations and Monitoring

The Climate and Wildfire Connection

Air Quality and Fire Weather Modeling
Newly Implemented Products

Rapidly updating smoke forecasts

Global air quality forecasts

Improved tools for information dissemination

Particulate Matter
Newly Implemented Products

Rapidly updating smoke forecasts

Improved tools for information dissemination

Global air quality forecasts

Particulate Matter
Satellite Proving Ground

NOAA engages external user community/stakeholders (e.g., U.S. Forest Service).

Fire and smoke initiative goals include:
- Improve satellite fire and aerosol product use for fire spread, air quality, visibility.
- Enhance HRRR model to improve smoke forecasts.
- Address feedback from users/stakeholders.
- Train users.
- Enhance websites to display key products.

“I’ve been at California State Emergency Services and the smoke model data was VITAL and still is for our Department of Transportation partners dealing with AMTRAK running through northern and central California. I’ve met these DOT folks in person and they would like to say thank you too!”
– NWS Science and Operations Office in Hanford, CA

“I want to thank you all for the tremendous support we received from JPSS for the Camp Fire and Woolsey Fire incidences in California! My sincere gratitude to all of you who made the extra effort to support California!”
– California Department of Forestry and Fire Protection
A Future NOAA Fire Weather Testbed

Objectives
- Move advanced technologies and applications to operational platforms as quickly as possible
- Bring fire weather community together to leverage knowledge and expertise resulting in quick technological advances
- Leverage other NOAA testbeds and proving ground capabilities
- Reach beyond NOAA to build collaborations and partnerships

Anticipated Outcomes
Advanced fire weather models, products, and tools
- Better tools to detect fires early
- Advanced tools for incident-based product delivery (e.g. extreme fire behavior altering, smoke emission forecasts, improved weather forecasts at the site of a fire)
- Improved week to seasonal fire weather forecasts that incorporate climate and drought information
- Fill information gaps throughout the fire weather communities
A Way Forward: Establishing Priority Gaps

Fire, Smoke and Fuels Observations
- Enables early fire detection and real-time fire monitoring (spread & behavior)

Meteorological Observations
- Allows for improved smoke and fire behavior analysis and forecasting, and improved forecast tools in Alaska.

Modeling Improvements
- Improved fire spread and smoke predictions. Enables extreme fire behavior modeling and risk analyses.

Decision Support Tools
- Actionable forecast information in seasonal time period and tools for field use.
NASA research contributions to the U.S. fire community

Lesley Ott
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center

With contributions from Melanie Follette-Cook, Vince Ambrosia, Barry Lefer, Mike Falkowski, David Green, Doug Morton, Robert Field, and Liz Wiggins

April 1, 2022
NASA satellite data provide comprehensive information that guides understanding of pre-fire risk and post fire recovery (right). NASA also works collaboratively with other agencies and international partners to harmonize datasets and provide expertise on cal/val and retrieval algorithms (*).

Below (L-R): GEDI vegetation height, ECOSTRESS surface temperature, and GRACE soil moisture

<table>
<thead>
<tr>
<th>Satellite/Sensor</th>
<th>Fire Application</th>
<th>Data Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>LandSat*</td>
<td>Land class, Vegetation indices, Moisture</td>
<td>Imagery, NDVI, EVI, SAVI, NDWI</td>
</tr>
<tr>
<td>MODIS</td>
<td>Land class, Vegetation indices</td>
<td>Imagery, NDVI, EVI</td>
</tr>
<tr>
<td>VIIRS*</td>
<td>Vegetation indices</td>
<td>Imagery, Vegetation health</td>
</tr>
<tr>
<td>SMAP</td>
<td>Soil moisture</td>
<td>Soil moisture</td>
</tr>
<tr>
<td>GRACE</td>
<td>Groundwater Storage</td>
<td>Groundwater, Soil moisture</td>
</tr>
<tr>
<td>ECOSTRESS (ISS)</td>
<td>Moisture, Evaporative Stress</td>
<td>Thermal Data, ESI</td>
</tr>
<tr>
<td>GEDI (ISS)</td>
<td>Vegetation Structure</td>
<td>LIDAR Data, Biomass</td>
</tr>
<tr>
<td>IceSat-2</td>
<td>Vegetation Structure</td>
<td>LIDAR Data, Biomass</td>
</tr>
<tr>
<td>SRTM</td>
<td>Topography</td>
<td>Topography (DEM)</td>
</tr>
</tbody>
</table>
During a fire, data from MODIS and VIIRS provide information on fire intensity that is used to estimate emissions. Additional observations characterize plume composition, transport, and injection height (table). Following a fire, satellite-based precipitation can provide advance warning of conditions that could lead to deadly landslides.

Left: IMERG satellite-based precipitation estimates over the Thomas Fire burn scar (top); MODIS image of CA wildfires overlaid with MISR plume heights (bottom)

<table>
<thead>
<tr>
<th>Satellite/Sensor</th>
<th>Smoke-related Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOPITT</td>
<td>Mid-, lower troposphere CO</td>
</tr>
<tr>
<td>MISR</td>
<td>Aerosol optical depth, plume height</td>
</tr>
<tr>
<td>MODIS</td>
<td>Fire Radiative Power, Aerosol optical depth</td>
</tr>
<tr>
<td>AIRS</td>
<td>Mid-troposphere CO</td>
</tr>
<tr>
<td>OMI</td>
<td>Aerosol index, total column O$_3$</td>
</tr>
<tr>
<td>MLS</td>
<td>Upper troposphere CO</td>
</tr>
<tr>
<td>CALIPSO CALIOP</td>
<td>Aerosol optical depth, profile</td>
</tr>
<tr>
<td>DSCOVR EPIC</td>
<td>Aerosol optical depth</td>
</tr>
<tr>
<td>VIIRS*</td>
<td>Fire Radiative Power, Aerosol optical depth</td>
</tr>
<tr>
<td>Suomi-NPP OMPS*</td>
<td>Aerosol index</td>
</tr>
<tr>
<td>SAGE III (ISS)</td>
<td>Stratospheric aerosol optical depth</td>
</tr>
</tbody>
</table>
Airborne observations provide additional information before, during, and after fires, covering areas of interest more frequently, at higher spatial resolution, and observing quantities not available from spaceborne observations.

Right: Coordinated field campaigns like the 2019 NOAA-NASA FIREX-AQ collect observations of trace gases and aerosol properties that help improve satellite retrievals and smoke modeling. Photos show fires in western Washington (top), Mississippi River Valley (middle) from the NASA DC-8 along with DC-8 flight tracks (bottom).

Below: NASA aircraft data are also frequently used to survey fires in the western US. UAVSAR data (left) are used to map burn scars and characterize risk for post-fire debris flows. Hyperspectral imagers like MASTER (middle) observe at different wavelengths to capture both thermal signatures and visible imagery.
Below: NASA has developed multiple approaches to estimating fire emissions using both burned area and fire radiative power (FRP). FRP-based datasets like the Global Fire Emissions Database Near Real Time (GFED-NRT) and the Quick Fire Emissions Dataset (QFED) estimate emissions in near real time, helping communities worldwide estimate risks from smoke exposure.

Right: These data are ingested into NASA’s Global Earth Observing System Models (GEOS), which also assimilates aerosol optical depth, to predict the evolution of smoke plumes. GEOS also provides an experimental Composition Forecast (GEOS-CF) that simulates detailed ozone photochemistry.
The Global Fire WEather Database (GFWED) integrates multiple NASA datasets (including IMERG precipitation) indicating the likelihood of a vegetation fire starting and spreading. It includes both retrospective versions based on NASA’s MERRA-2 reanalysis and experimental forecasts that incorporate GEOS data.

Correlation between early, late fire season severity

NASA also supports research efforts to assess the predictability of fire risk on S2S timescales. Work done at the University of California, Irvine shows that in many regions, the strength of the early fire season provides information about activity in the late season (correlation can be positive or negative). Relationships like these can be used to build statistical models of fire risk months in advance.

Chen et al., JAMES, 2020.
Data Services and Applications

FIRMS – Global and US/Canada (joint with USFS) sites provide map-based analysis tools for burned area and active fire data.

GWIS – Led by the Group on Earth Observations (GEO) and Copernicus, provides burned area and active fire data alongside lightning and fire danger forecasts, and emissions estimates.

Worldview – Versatile map viewer for satellite data products supporting overlays of surface imagery, fires, clouds, and composition data.

Disasters Portal - Powerful interface for viewing, analyzing, and downloading the latest near real-time and disaster specific data products from NASA Applied Sciences.

ARSET - Offers cost-free online and in-person trainings covering a range of datasets, web portals, and analysis tools and their application to climate, air quality, agriculture, disaster, land, and water resources management.
Observations:
• More information on PBL and plume height
• More diurnal information to characterize emissions, air quality risks
• Better temporal and spatial resolution for data products

Modeling:
• Improve prediction of fire risk on both NWP, S2S timescales
• Improve connection between high-resolution, global modeling capabilities
• Develop of AI/ML techniques for downscaling predictions

Cross-cutting:
• Improve data services that support more reliable access, interoperability between datasets
• Streamline the R2O pathway to facilitate more rapid adoption of new technologies, modeling approaches
• Improve communication across federal, state, and local agencies and the general public
ICAMS CoRI Wildfire Workshop

April 1, 2022

Presenter: Olga Tweedy

Department of Energy | Office of Science | Biological and Environmental Research Programs
DOE National Laboratories

“The Energy Department's National Labs tackle the critical scientific challenges of our time -- from combating climate change to discovering the origins of our universe -- and possess unique instruments and facilities, many of which are found nowhere else in the world. They address large scale, complex research and development challenges with a multidisciplinary approach that places an emphasis on translating basic science to innovation.”
DOE Wildland Fire and Fire Weather Capabilities

Outline:
DOE capabilities based on work performed at the DOE’s labs:
• Observational and Analytical capabilities
• Modeling and Predictions
• Detection and Assessment
• Process-oriented research
• Applications and decision support systems
Major focus on pre-fire, during the fire, and wildland fire 1st order impacts
DOE labs support various analytical facilities, field measurements/studies, and networks of instrumentation

Facilities
- Atmospheric Radiation Measurement (ARM) user facility
- Center for Accelerator Mass Spectrometry - CAMS (LLNL)
- Center for Aerosol-Gas Forensics (CAFÉ) (LANL)
- Environmental Molecular Sciences Laboratory (PNNL)

Field Studies
- Air quality in prescribed burns (ANL; DoD-funded project)
- Prescribed fire behavior experiments (LANL; funded through DoD SERDP)

Networks of instrumentation
- AmeriFlux (A network of PI-managed sites)
- WHONDRS (PNNL; a network for watershed science)
- SAGE (ANL; a Software-Defined Sensor Network)
Model Development

Microscales
Multi-fidelity coupled fire/atmosphere modeling resolving phenomena at meter scales over landscape-scale domains:
- Physics-based coupled fire/atmosphere modeling, FIRETEC (LANL).

Mesoscales
Wildfire capabilities are being added to Weather Research and Forecasting model (WRF) based tools to:
- To better represent steep terrain conditions relevant to California, Colorado, and other wildfire-prone states (LLNL).
- To develop the use of WRF-SFIRE for wildfire aerosol modeling - a model that couples wildfire, aerosols, and meteorology (ANL)

Regional to global scales
E3SM is a DOE fully coupled, state-of-the-science Earth system model capable of global high-definition configuration (25 km and 3 km atmosphere)
- LLNL is adding critical capabilities to E3SM for improved representation of the wildfire influences on earth system at regional and global scales
Coupling physics-based fire/atmosphere, fire effects, plant succession, and hydrology models to understand ecosystem trajectories under managed and unmanaged scenarios as we approach no-analogue climate scenarios.

- Trade offs between managed and unmanaged landscapes
- Impacts of fire frequency on ecosystem stability
- Watershed security
- Carbon budgets
Predictive Modeling with AI/ML

- **LBL**: Using ML to **predict wildfires several months** in advance and **develop wildfire surrogate models** for calibrating E3SM fire projections

- **ORNL**: Developed a range of ML models to **predict seasonal fire risk**. These models have been used to forecast wildfires in Africa and Alaska.

 - Africa contains about 70% of the global burned area, shown in red (image is created by NASA)

- **ANL**: Developed analytic models for **assessment of US wildfire danger potential**, based on five commonly used fire danger indices (FDIs) that incorporate weather and fuel conditions; modeling wildfire occurrences and burned areas in the US using ML.

 - Seasonal mean fire index from 1982–2017 (from Brown et al., 2021)
A variety of sensors and devices are funded by DOE for wildfire detection and mitigation:

Example: ORNL and LLNL are working on the installation of a high-fidelity optical sensor cluster in an operational utility service area. This technology will help to identify and mitigate fire risk.

Satellite-based Fuel Load Analysis:

LLNL is developing image processing techniques for combining high-resolution aerial photography with lower resolution satellite images to provide detailed regional maps of surface vegetation conditions and support modeling and hazard assessment activities.
Process-Oriented Research

Fire dynamics, Physical and chemical processes, wildfire impacts

Coupled Fire – Ecosystem– hydrology studies

Ecosystem-resilience and landscape-management-implication research
The western US wildfires notably increase occurrences of heavy precipitation rates by 38% and significant severe hail (2 inches or larger) by 34% in the central US.

Examined sensitivities and gain knowledge about the ignition, spread, and emissions of fire in wildland and urban areas.
Coupled Fire-Ecosystem-Hydrology Studies

- **Ecosystem response and recovery (ORNL):** modeling and spatial scaling of ecosystem dynamics related to fire, including soil carbon and nutrient cycling, forest composition, demography, and ecology, and impacts to watershed hydrology and water quality.

- **Coupled ecosystem-fire science (LANL):** using FIRETEC to and QUIC-Fire’s to better understand fire’s role in ecosystem dynamics and ecosystem sustainability

- **Tropical forest recovery following fire** (a study within the DOE-funded multi-institutional project - NGEE-Tropics)

- **Modeling the effects of wildfire on basin-scale hydrology and ecosystem carbon cycling (LBL)**

- **The role of ecosystems and extremes in future water resources (LBL):** assess future fire across the western US, and interactions with societies water resources

Department of Energy, Office of Science, Office of Biological and Environmental Research
Ecosystem-resilience and landscape-management-implication research

DOE lab scientists address challenging question related to ecosystem-resilience and land management practices

- The impact of land management practices on fire risk and soil carbon stocks (LLNL):
 - Fighting fire with fire: Can traditional Native American burn practices reduce devastating wildfires and increase soil carbon storage?

- Determining the effectiveness of wildfire treatments (LBL):
 - analyzed the fire CO2 emissions in California from 1998-2015 over forested areas that were treated and untreated and compared emissions.

- Prescribed fire and ecosystem response (LANL)
 - Prescribed fires are understudied
 - Prescribed Fire reduces fuel load & maintains ecosystem stability.

Department of Energy, Office of Science, Office of Biological and Environmental Research
Applications and Decision Support Systems

<table>
<thead>
<tr>
<th>Use category</th>
<th>Tools/Lab</th>
<th>Specific application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecosystem monitoring and wildfire risk assessment</td>
<td>ForWarn II (ORNL, US Forest Service)</td>
<td>Recognizing and tracking landscape changes using satellite-based change detection algorithms to provide near real-time CONUS-scale fire risk potential assessments.</td>
</tr>
<tr>
<td></td>
<td>PlanetSense (ORNL)</td>
<td>Providing ground-based near-real-time social listening capability that generates situational awareness for wide-area monitoring of wildfires and landscapes disasters.</td>
</tr>
<tr>
<td>Landscape-management planning</td>
<td>Forest System Health DST (PNNL with DOE and USFS)</td>
<td>Estimating sustainable forest biomass, hydrologic and wildfire risk using high-resolution spatial vegetation characteristics data in a multi-objective analysis framework.</td>
</tr>
<tr>
<td></td>
<td>BurnPro3D (LANL with UCSD, USGS)</td>
<td>Using AI and PGML and process-based wildland fire modeling to evaluate and compare landscape level treatment sequences for risk reduction and ecosystem resilience.</td>
</tr>
<tr>
<td>Fuels treatment and prescribed fire optimization</td>
<td>QUICK-Fire and BurnPro3D (LANL with UCSD, USGS)</td>
<td>Assisting with development of optimal prescribed fire windows and operations to meet ecological and fire risk mitigation targets using large ensembles of process-based coupled fire atmosphere simulations.</td>
</tr>
<tr>
<td>Data sharing, access, and management</td>
<td>Pilot Data Management Platform for WFSI (LBL)</td>
<td>Promoting data storage, sharing, use, and long-term archiving; Enabling modeling/analysis on the harmonized data.</td>
</tr>
<tr>
<td>Wildfire detection</td>
<td>ML/AI (ANL)</td>
<td>Detecting wildfires using machine learning techniques.</td>
</tr>
<tr>
<td></td>
<td>RADR-Fire (PNNL)</td>
<td>Detecting wildfires as part of its broader Rapid Analytics for Disaster Response toolset.</td>
</tr>
<tr>
<td>Wildfire spread and patterns</td>
<td>EMBYR (ORNL)</td>
<td>Providing probabilistic fire pattern and spread predictions based on fire weather, meteorological conditions, and fuel characteristics.</td>
</tr>
<tr>
<td>Multi-scale fire effects estimation</td>
<td>Disturbance response model (DRM) (LANL)</td>
<td>Coupling fire behavior, fire effects, ecosystem succession, and hydrology at km to 10s of km scales.</td>
</tr>
<tr>
<td></td>
<td>FATES-SPITFIRE (LBL)</td>
<td>Representing larger-scale forest fire behavior and recovery for predicting ecosystem function.</td>
</tr>
</tbody>
</table>

Pre-fire | During fires | Post-fires
Summary

• The DOE labs have a wide range of fire weather and wildfire capabilities
• Funding comes from many sources and DOE scientists are actively collaborating with research communities outside of the DOE labs:
 - DOE (including BER and Office of Electricity)
 - Internal laboratory funding (LDRD)
 - USDA Forest Service (WO, RMRS, SRS, NRS)
 - USGS
 - DoD SERDP/ESTCP program
 - State and local governments
 - Other stakeholders
• Additional partner institutions include
 - At least a dozen academic institutions
 - Canadian Forest Service
 - INRAE, L’Institut National De Recherche Pour L’
 - A variety of NGO collaborators
NSF’s Strategic Opportunity in Wildland Fire Science

Marc Stieglitz
Yulia R. Gel, Yu Gu, Kendra McLauchlan
Liz Blood, Carla D’Antonio, John Daily, Tom Evans, Justin Lawrence,
Daan Liang, Megan Lewis, Joy Pauschke, Asli Sezen-Barrie,
Regina Sievert, Colette St. Mary

U.S. National Science Foundation (NSF)

1 April 2022
NSF by the Numbers

$8.5B FY 2021 Enacted
$200M to seed public/private partnerships
12K awards funded/year
$1.4B for STEM education
94% funds research, education, and related activities
248 NSF-funded Nobel Prize winners
43K proposals evaluated
2K funded institutions
307K people funded

Investigator-driven Science
Infrastructure
Centers and Institutes
Researchers
Trainees and Students
Industry and Others
Fire-related awards have increased over the past 8 years

Total Count of Awards by Year

Awards by NSF Directorate

- GEO, 155
- ENG, 138
- BIO, 108
- CISE
- MPS, 59
- SBE, 47
- EHR, 25
- OD,
Fire-related research is supported through regular awards as well as special proposal types. Regular awards over the past 5 years (n=359) totaled $287 M.
Every state in the U.S. has at least one fire-related award in the past 8 years.

California has the most fire-related awards.
Research Focus Areas

Modelling & Analysis

Research Oriented

- CAWFE (Coupled Fire-NWP) (GEO)
- WE-CAN (GEO)
- Smoke Plume Forecasting (MPS, ENG)
- Orography on Extreme Weather (EHR)
- Uncertainty in Operational Smoke Forecasts (MPS)
- Attribution Studies for Extreme Events (MPS)
- Decision Making (SBE)
- Land-use Change on Fire Regimes & Feedbacks (GEO-OD, MPS)
- Post-Fire Nanomaterials Fate Modelling (ENG)

Observations

- Satellite Remote Sensing
- NEON (BIO)
- Drones & Intelligent Sensor Networks (GEO, BIO, CISE)
- UAV Fire Observation For Management, & Evacuation (CISE, SBE)
- Wireless Sensors & Monitoring of Electric Power Infrastructures (ENG-CNS)
- Low-Cost Efficient Wireless Intelligent Sensors in Native American Communities (CIVIC)

Operational

Application Oriented

- WIFIRE (CISE-OAC)
- WRF-(S)FIRE (GEO)
- WIRC (GEO)
- Soil Moisture Data Base (NSF-NCAR)

Machine Learning, AI, Novel Statistical Techniques
Observed increases in extreme fire weather driven by atmospheric humidity and temperature

Fig. 4 | Attribution of PWI trends by region. Percentage of significant trends for PWI attributable to trends in T/W input variables T, precipitation (P), RH, and VPD, as well as VPD summarized globally, by continent. Results were determined using the PHK test (Methods).

Piyush Jain et al., Nature 2022
OAI-2019762
Preparing communities for wildfire

- Will co-build, develop, and deploy over 100 LEWIS sensors
- Community will use data through a secure online portal
- Data and Decision Support
- Leaders and students at Ohkay Owingeh Pueblo

Low-Cost Efficient Wireless Intelligent Sensors (LEWIS) for Greater Preparedness and Resilience to Post-Wildfire Flooding in Native American Communities

Ohkay Owingeh Pueblo in New Mexico

NSF Award ID: 2043618

PI: Fernando Moreu, University of New Mexico
Examples of NSF-funded Research: During Fire

Impact on air quality

Science themes:
• Fixed nitrogen emissions and evolution
• Evolution of aerosol optical properties
• Cloud activation and chemistry in wildfire plumes
Examples of NSF-funded Research: After Fire

Earth Science responses to 2020 wildfire season (RAPID)

Themes:
- Snow water storage
- Snowpack
- Flow paths
- Sediment dynamics
- Soil characteristics
- Geomorphic change in river estuary
- Streamflow response

Lionshead and Beachie Creek Fires, OR
Salem

CZU and SCU Lightning Complexes, CA

Apple Fire, Holser Fire, Lake Fire, Dolan Fire and SCU Lightning Complex, CA

Cameron Peak Fire, CO
Fort Collins

Grizzly Creek Fire, CO

Glenwood Springs
NSF has a unique role in wildland fire research

<table>
<thead>
<tr>
<th>Fundamental science conducted by the research community</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence research that includes social science</td>
</tr>
<tr>
<td>Innovative ways to connect with stakeholders and rights holders</td>
</tr>
<tr>
<td>Diverse programs and approaches</td>
</tr>
<tr>
<td>Mechanisms for broadening participation, education, and outreach</td>
</tr>
<tr>
<td>Potential for partnerships with: USFS, NASA, USGS, NOAA, JFSP, international</td>
</tr>
</tbody>
</table>
Gaps in existing fire-related research at NSF

<table>
<thead>
<tr>
<th>Wildland fire convergence research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure or facilities to support wildland fire data, modeling, and forecasting</td>
</tr>
<tr>
<td>Non-academic partnerships</td>
</tr>
<tr>
<td>Education programs for convergent professional learning and enhanced public engagement</td>
</tr>
<tr>
<td>Dedicated support for Indigenous fire science</td>
</tr>
<tr>
<td>Decision making under uncertainties and uncertainty quantification (UQ)</td>
</tr>
</tbody>
</table>
Opportunities for Cross-agency coordination/collaboration

• Participate in other agencies’ relevant meetings, hold regular interagency update meetings, or set up channels of communication among agencies

• Explore coordinated opportunities for interagency wildland fire programs

• Establish a network to coordinate wildfire related research (e.g., a portal for inventory of all wildfire related projects so that agencies can avoid over-allocating federal funds in one specific area)

• Build an integrative information system for wildfire management so that observations, modeling results, knowledge, and findings produced from projects of various agencies can be shared

• Leverage the infrastructure of agencies with applied science and operations (e.g., NASA, USGS, NOAA, DOE, etc.)

• Explore ways to expand diversity, equity, and inclusion in our research investments

• Develop large scale interagency and interdisciplinary collaborative programs or research centers
Panel Discussion

J. Kevin Hiers
Brian Ebele
Kurtis Nelson

Jenn Mahoney
Robyn Heffernan
Mike Pavolonis

Robert Field, GISS
Doug Morton, GSFC
Liz Wiggins, LaRC

Rod Linn, LANL
Charlie Koven, LBL
Jeffrey D. Mirocha, LLNL

Kendra McLauchlan
Yulia Gel
Yu Gu
Wrap Up

● Final Thoughts from the Organizers

● Next Workshop
 ○ Common Challenges and Opportunities

● Thank you all for coming to support this important ICAMS effort

● Save the date! Next ICAMS Fire-weather/Wildfire Workshop
 Thursday 5 May 2022, 1100 - 1400 Eastern