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Timeline of ML Integration with NWP and Evolution 
to ESDTs

!960s-1970s: 
advent of 
Numerical 
Weather 
Prediction (NWP)

First calculation of 
NWP on a 
computer: Charney, 
J. G., Fjoertoft, R. & 
Neumann, J. v. 
Numerical integration 
of the barotropic 
vorticity equation. 
Tellus 2, 237–254 
(1950).

1980s: Use of 
statistical methods 
and improved 
numerical schemes 
in weather 
forecasting

Robert, A. J. A semi-
Lagrangian and semi-
implicit numerical 
integration scheme for the 
primitive meteorological 
equations. J. Meteorol. 
Soc. Jpn 60, 319–324 
(1982).

1990s: Emergence 
of neural 
networks, 
sophisticated data 
assimilation

Daley, R. Atmospheric 
Data Analysis 
(Cambridge Univ. 
Press, 1991).

Rumelhart, D. E., 
Hinton, G. E. & 
Williams, R. J. Learning 
representations by
back-propagating 
errors. Nature 323, 
533–536 (1986).

2000s: ML 
enhancements to 
data assimilation 
and advanced 
data assimilation 
algorithms

Grell, Georg A., and 
Dezső Dévényi. "A 
generalized approach 
to parameterizing 
convection combining 
ensemble and data 
assimilation 
techniques." Geophysi
cal Research 
Letters 29.14 (2002): 
38-1.

2010s: Deep 
learning 
applications in 
weather 
forecasting, 
hybridization of 
NWP and ML 
models

O'Gorman, Paul A., 
and John G. Dwyer. 
"Using machine 
learning to 
parameterize moist 
convection: Potential 
for modeling of 
climate, climate 
change, and extreme 
events." Journal of 
Advances in Modeling 
Earth Systems 10.10 
(2018): 2548-2563.

2020s: Real-time 
forecasting and 
generative models, rise 
of explainable AI, early 
development of Earth 
System Digital Twins 
(ESDTs) and 
Foundation Models for 
weather and climate

Bauer, Peter, Bjorn Stevens, 
and Wilco Hazeleger. "A digital 
twin of Earth for the green 
transition." Nature Climate 
Change 11.2 (2021): 80-83.

Schmude, Johannes, et al. 
"Prithvi WxC: Foundation 
Model for Weather and 
Climate." arXiv preprint 
arXiv:2409.13598 (2024).



Complexity vs. Scale in ML Applications

Bauer, Peter, Alan Thorpe, and Gilbert Brunet. "The quiet revolution of numerical 
weather prediction." Nature 525.7567 (2015): 47-55.

Parameterizations: Early applications of ML in NWP often 
focused on simplifying complex processes (like cloud formation 
and turbulence) through ML-based parameterizations. These 
models aimed to capture intricate atmospheric phenomena with 
reduced computational complexity, making them suitable for 
large-scale models that require efficiency without sacrificing 
significant accuracy.

Hybrid Models: The integration of ML into existing NWP 
frameworks has led to the development of hybrid models, which 
combine traditional numerical approaches with machine 
learning. This synergy allows for improved performance at 
various scales, balancing complexity with computational 
feasibility.

Digital Twins: The concept of digital twins represents a holistic 
approach to simulating the Earth's systems, integrating 
atmospheric, oceanic, and terrestrial models into a unified 
framework. This requires managing substantial complexity due to 
the interactions between different components of the Earth 
system.



NWP at Goddard: GCMs for Weather and Climate

General Circulation Models (GCMs) are complex computer models used to simulate the Earth's 
climate and weather systems. They are essential tools for understanding atmospheric processes 
and predicting future climate changes.

The Goddard Earth Observing 
System version 5 (GEOS-5) 
atmospheric model is a weather 
and climate numerical model 
developed for analyses and 
weather forecasts of Earth's 
atmosphere, climate simulations 
and predictions, and chemistry-
resolving simulations.

All versions of GEOS are developed 
and maintained by the Global 
Modeling and Assimilation Office 
(GMAO) at NASA Goddard Space 
Flight Center (GSFC)

The Goddard Institute for Space 
Studies (GISS) develops a 
framework of coupled 
atmosphere-ocean modules for 
climate simulation and prediction 
called ModelE.

The E3.x series of model 
configurations has progressed 
structurally from the E2.1/E2.2 
generations in the pursuit of 
two primary goals: fidelity of 
cloud processes, and 
increased resolution in all 
components.



ML at Goddard – Published work

Simulation of 
biogeochemical 
processes and 
oceanography

O’Shea et. al. 2023, R.S. Env.
Fasnacht et. al., 2022, Rem. Sens.
Pahlevan et. al. 2022, Rem. Sens. 

Env.
Craig & Karaköylü, 2019, 

EarthArXiv

Radiative-
transfer/satellite 

emulators
Kalb et. al. 2023, Earth and 

Space Sci.
Stegmann et. al. 2022, JQSRT

Vasilkov et. al., 2022, Rem. 
Sens.

Planetary observation 
and exploration

Valizadegan et. al. 2022, TAJ
DaPoian et. al. 2021, Computer

Adriani et. al. 2023, PRL
Brill 2023, arXiv

Olmschenk et. al., 2021, TAJ
Mengwall & Guzewich 2023, 

Icarus
Kalb et. al. 2023, ESS

Foundation model 
development for 

weather and 
climate

Schmude et. al., 2024, 
arXiv

Mukkavilli et. al. 2023, 
arXiv

Hydrology and land 
processes

Li & Rodell 2023, AMS
Clyvihk et. al. 2023, WRR

Yatheendradas et. al. 2023, AMS
Biswas et. al 2022, Front. Earth Sci.

Elders et. al. 2022, RSA
Amatya et. al. 2021, Eng. Geo.

Stanley et. al., 2021, Front. Earth Sci.
Rodriguez-Fernandez et. al. 2015, 

IEEE 

Atmospheric science
Foley et. al. 2024, EGUsphere

Barahona et. al. 2024, AIES
Gao et. al. 2023, AMT

Caraballo-Vega et. al. 2023, RSE
Anderson et. al. 2023, ACP

Anderson et. al. 2022, GMD
Gao et. al., 2022, AMT

Li et. al. 2022, AMT
Andela et. al., 2022, Sci. Adv.

Sayeed et. al. 2022, AMT
Fedkin et. al. 2021, AMT
Gao et. al., 2021, AMT

Lee et. al., 2021, Rem. Sens.
Yorks et. al. 2021, Atmosphere

Chen et. al., 2020, JAMES
Chen et. al. 2014, N. Geo.



Subgrid-scale Dynamics are Highly Uncertain in 
GCMs

• Problem: Physics occurring on micro/subgrid scales 
cannot be fully-resolved at typical GCM resolutions

• We need accurate parameterizations for subgrid-scale 
dynamics!

• Numerical Solution: Best available theory + data 
assimilation

• Numerical methods can be computationally expensive
• Lack of fundamental scientific knowledge at relevant 

scales

1° Latitude

1° Longitude
≈100 km

≈1-10 m

Deep Learning (DL) Solution: Leverage patterns inherent in data (simulated+observed)
• Unless otherwise constrained, off-manifold (physically inconsistent) predictions are 

common



Wnet prediction constrained by obs

Probabilistic learning 
of sub-grid physics

Bias (observations 
vs predictions): 15%

Daily mean σw (m/s). Obs vs. ⎼ Prediction

Wnet prediction (G5NR, unconstrained)
Bias (observations 
vs predictions): 75%
,

Example application: Wnet (PI: Donifan Barahona)

Barahona, Breen et. al. (2024) Deep Learning Parameterization of Vertical Wind 
Velocity Variability via Constrained Adversarial Training, AIES

GCM AI 
surrogate

(generator)
MERRA-2 Discriminator

Constrain G5NR
Observational data

Generator
Reproduce 

G5NR

Wnet-priorG5NR 
Inputs

Wnet: Probabilistic refinement using observational data

Wnet-prior: Surrogate model for G5NR vertical wind velocity



Limitations in Traditional Deep Learning 
Parameterizations

Challenges:
• NNs do not generalize well to new data when the state is outside the variability of the training data set 

(EX: extreme events, changing climate)
• Without constraints, physically implausible predictions are possible (EX: negative precipitation)
• Model-observation biases present in the GCM are inherited by the emulator – requires 

correction/constraints/post-processing

Computing:
• Software:

• Integration of Python ML models with legacy code bases – dependent on developing software
• Development of pure-Python GCMs – in process but not operational

• Hardware:
• Increasing complexity of ML model configurations necessitates hardware acceleration and 

increases in wall time relative to numerical models



Foundation Models

• Stanford introduced the concept of 
foundation models in 2021 to tackle some 
of the limitations in traditional deep 
learning.

• Defined as models trained on broad data 
(generally using self-supervision at scale) 
that can be adapted to a wide range of 
downstream tasks.

• The “pretrained model” description was not 
enough because it suggested that the 
noteworthy action all happened after 
“pretraining”.

[29]

Seminal Stanford CRFM white paper, 2021



Foundation Models for Science

• Adopting foundation models for science requires some additional quality 
assurance to establish trust and set applicability expectations.

• Our approach to foundation models follows these key areas:
• adaptability (e.g. multiple sensors, multiple tasks)
• accessibility (e.g. computational efficiency, software availability)
• trust (e.g. latent space representation,  science output)
• validation (e.g. experimentation, produce better science)

• We want to understand foundation models strengths and weaknesses to 
establish when does it make sense to use them, but also how to select the most 
appropriate models for better science.

• And lastly when do we need to build a new one rather than fine tuning an 
existing one.



Earth Science Applications of Foundation Models
(Large overlap with classic-ML applications)

Recognition and Classification
On the ground and onboard

Surrogate 
Models

Interpolation and 
Reconstruction

Forecasting and
Nowcasting

LU/LC Spectral 
Unmixing

Cloud
Masks

Model Understanding and
Physics-Inspired ML

Fast 
Inversions

Fast
Models

Boundary
Conditions

Parameterizations

Governing
Equations

Hydrology AQ

Downscaling

Surface 
Water
Extent

Data 
Fusion

Four 
Cast Net

Generative
Interpolation

Cloud removal
Gap filling

Bespoke NLP 
interfaces

Domain-specific 
Language Models

Show me the 
relationship between 
SST and algae blooms 
over the last decade.



AIST R&D in Foundation Models

SLICE: Semi-supervised Learning from 
Images of a Changing Earth

Coupled Statistics-Physics 
Guided Learning 

Digital twin technologies for 
climate projections

Wilson, JPL; AIST-21-0025 Xie, UMD; AIST-21-0068 Schmidt, GISS; AIST-QRS-23-0005

Eddy Detection from SAR 
imagery

SST reconstruction 
under clouds

Applications of Vision Transformers and semi-
supervised ML to enable hard remote sensing 
problems and increase performance despite 

scarce labeled data.

Semi-supervised learning; physics-
guided; and heterogeneity-aware 

learning.

Large Language Models (LLM) to 
generate bespoke data 

visualizations for user queries

original

Cloud masks reconstruction

show me the estimated
regional temperature 
range over the next 30 
years

LLM

Custom
visualization

ESDT



CSDO, HEC & ESDS R&D in Foundation Models 
with Collaboration with IBM Research

• LLM for NASA’s Science Mission Directorate
• Base Encoder Model - encoder-only transformer model, tailored for 

SMD applications
• Sentence Transformer - Generates embeddings for queries and 

sentences, enhancing information retrieval
• Passage Reranker - fine-tuned model that takes a search query, 

and a passage, and calculates the relevancy score of the passage 
w.r.t the query

•Prithvi-HLS - Geospatial FM based on HLS data to support Land Surface 
Processes and Application

• Initial version
• Working on updated global version

•Prithvi-Weather and Climate (WxC) FM - the focus is not just on 
Forecasting/Prediction but also on different categories of downstream 
applications

• First version May 2024
•Helio/Space Weather FM - based on SDO data for space weather 
applications (just started)



HEC & ESDS R&D in Foundation Model
Prithvi-WxC (Weather & Climate) Foundation Model

• Goals

● AI FM for Weather and Climate not focused on 
Forecasting/Prediction but for different categories of 
downstream applications

● Model will multiresolution both spatial and temporal to be 
able to use different types of data such as MEERA, ERA 
and HRRR

● Quickly establish the credibility of the WxC model and 
move on to develop multimodal climate applications for 
ES2A

• Approach
● Core architectures under consideration: SWIN, Hiera
● Extensions/modifications include:

○ Multi-level and multi-resolution approaches to accommodate 
data at different spatial and temporal scales.

○ Diffusion-based architectures to incorporate additional 
information and enhance model predictions.

● Evaluation using seven different types of use cases 

• Team
•Broader participation for Science experts to ensure right 
direction, evaluation and future adoption of the model in their 
workflows 
•[NASA, DOE ORNL, IBM Research, NVIDIA,  Academia -
University of Colorado, University of Alabama in Huntsville, 
Stanford]



AIST Earth System Digital Twins

NASA ESDT Workshop Report, 2022



Earth Systems Digital Twins (ESDTs) are an emerging capability for 
understanding, forecasting, and conjecturing the complex interconnections 
among Earth systems, including anthropomorphic forcings and impacts to 

humanity.

• ESDTs will play a critical role in NASA’s new Earth Science to Action initiative.  
• AIST-21 Solicitation, first US government Solicitation requesting Digital Twins 

Technology for Earth Science ESTO AIST Earth System Digital Twins (ESDT) 
• As of 2023, 16 current ESDT technology development projects funded under the 

Advanced Information Systems Technology (AIST) program focusing on developing: 
• Underlying analytic capabilities to build Digital Replicas 
• Novel ESDT infrastructure technologies 
• Surrogate modeling and ML emulators 
• Preliminary prototypes including interconnected modeling.

Visit the dedicated ESDT webpage at: https://esto.nasa.gov/earth-system-digital-twin/

AIST ESDT cont.



Thank You

Questions?
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