

Dynamics of strongly tilted Hurricane Vortices

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin

Thanks to ...

Eileen Päschke

Ariane Papke

Patrick Marschalik

Antony Owinoh

Tom Dörffel

Sabine Hittmeir

Piotr Smolarkiewicz

Boualem Khouider

Mike Montgomery

Roger Smith

(Deutscher Wetterdienst, Lindenberg)

(formely FU-Berlin)

(Fritz Haber Institute, Berlin)

 (\dagger)

(FU-Berlin)

(Univ. of Vienna)

(ECMWF, Reading)

(Univ. of Victoria)

(Naval Postgraduate School, Monterey)

(Ludwig-Maximilians Univ., München)

Deutsche Forschungsgemeinschaft

Scaling Cascades in Complex Systems

Motivation

Structure of atmospheric vortices I: two scales (*Päschke et al., JFM, (2012)*)

Structure of atmospheric vortices II: cascade of scales (Dörffel et al., arXiv:1708.07674)

Conclusions

HWRF-Simulations of Storm "Joaquin"

Motivation

Structure of atmospheric vortices I: two scales

(Päschke et al., JFM, (2012))

Structure of atmospheric vortices II: cascade of scales

(Dörffel et al., arXiv:1708.07674)

Conclusions

Radial momentum balance regimes

$$-\frac{1}{\rho}\frac{\partial p}{\partial r} + fu_{\theta} = o(1) \left(\begin{array}{ccc} \mathbf{geostrophic} & \operatorname{Ro} \ll 1 & \mathbf{typical "weather"} \\ \\ \frac{u_{\theta}^2}{r} - \frac{1}{\rho}\frac{\partial p}{\partial r} + fu_{\theta} = o(1) \left(\begin{array}{ccc} \mathbf{gradient \ wind} & \operatorname{Ro} = \mathcal{O} (1) \\ \\ \\ \frac{u_{\theta}^2}{r} - \frac{1}{\rho}\frac{\partial p}{\partial r} & = o(1) \left(\begin{array}{ccc} \mathbf{cyclostrophic} & \operatorname{Ro} \gg 1 \\ \end{array} \right) & \mathbf{hurricane} \end{array}$$

Vortex tilt in the incipient hurricane stage

(Velocity potential)

Scaling regime

$$L_{\rm syn}; \quad |\boldsymbol{v}_{\rm II}| \sim v_{\rm syn} \quad t_{\rm syn} \sim L_{\rm syn}/v_{\rm syn} \qquad L_{\rm mes} = \sqrt{\varepsilon} L_{\rm syn}; \quad v_{\rm mes} = \frac{1}{\sqrt{\varepsilon}}$$

$$\text{farfield: classica} \left(\text{QG theory} \right) \qquad \text{core: gradient wind scaling}$$

$$\mathcal{C} \sim v_{\rm syn} L_{\rm syn}; \quad \text{Ro}_{\rm syn} \sim \frac{v_{\rm syn}}{f L_{\rm syn}} = \mathcal{O}\left(\boldsymbol{\varepsilon}\right) \qquad \mathcal{C} \sim v_{\rm mes} L_{\rm mes}; \quad \text{Ro}_{\rm mes} \sim \frac{v_{\rm mes}}{f L_{\rm mes}} = \mathcal{O}\left(1\right)$$

$$L_{\rm syn}; \qquad |\boldsymbol{v}_{\scriptscriptstyle ||}| \sim v_{\rm syn} \qquad t_{\rm syn} \sim L_{\rm syn}/v_{\rm syn} \qquad L_{\rm mes} = \sqrt{\varepsilon} L_{\rm syn}; \qquad v_{\rm mes} = \frac{1}{\sqrt{\varepsilon}}$$

core: gradient wind scaling

$$C \sim v_{\text{mes}} L_{\text{mes}}; \quad \text{Ro}_{\text{mes}} \sim \frac{v_{\text{mes}}}{f L_{\text{mes}}} = \mathcal{O} (1$$

Vortex motion \Rightarrow **precessing quasi-modes***

Centerline evolution

 $\chi = fct(total circulation, centerline geometry)$

 $\Psi = fct(core structure, centerline geometry, diabatic sources)$

The adiabatic lifting in a tilted vortex**

^{*} Jones, Q.J.R. Met. Soc., **121**, 821–851 (1995)

Heating pattern for max intensification (APE-theory)*

Radial transport by asymmetric heating

Circumferential Fouriermodes of vertical velocity

$$\mathbf{u}_{r,*} = \left\langle w \frac{\partial}{\partial z} \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right\rangle_{\theta} \left(= \frac{1}{d\overline{\Theta}/dz} \quad Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right) \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right\rangle_{\theta} \left(= \frac{1}{d\overline{\Theta}/dz} \quad Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right) \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right\rangle_{\theta} \left(= \frac{1}{d\overline{\Theta}/dz} \quad Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right) \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right\rangle_{\theta} \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right\rangle_{\theta} \left(= \frac{1}{d\overline{\Theta}/dz} \quad Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right) \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right\rangle_{\theta} \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right)$$

Spin-up by asymmetric heating

$$(w = w_0 + w_{11} \cos \theta + w_{12} \sin \theta + \dots)$$

$$\underbrace{\frac{\partial u_{\theta,0}}{\partial \tau} + w_0 \frac{\partial u_{\theta,0}}{\partial z} + u_{r,00} \left(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} + f \right)}_{\text{standard axisymmetric balance}} \left(= - \mathbf{u_{r,*}} \left(\frac{u_{\theta}}{r} + f \right) \right)$$

$$\mathbf{u_{r,*}} = \left\langle w \quad \mathbf{e}_r \cdot \frac{\partial \widehat{\mathbf{X}}}{\partial z} \right\rangle \bigg\rangle_{\theta} \left(= \frac{1}{d\overline{\Theta}/dz} \quad Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right) \left(-\frac{\partial \widehat{Y}}{\partial z} \right$$

Recent results

Qualitative corroboration through 3D-numerics

Artificial heating pattern:

$$w_{1k} = \frac{1}{d\overline{\Theta}/dz} \left[\left(\frac{\partial}{\partial z} \left(\boldsymbol{e}_r \cdot \widehat{\boldsymbol{X}} \right) \right) \left(\frac{u_{\theta}}{r} \left(\frac{u_{\theta}^2}{r} + f u_{\theta} \right) \right) \left(\frac{\partial}{\partial z} \left(\boldsymbol{e}_r \cdot \widehat{\boldsymbol{X}}^{\perp} \right) \left(\frac{u_{\theta}}{r} \left(\frac{u_{\theta}^2}{r} + f u_{\theta} \right) \right) \right]$$

Recent results

Compatibility with Lorenz' APE theory*

$$(re_{\mathbf{k}})_{t} + (ru_{r,0}[e_{\mathbf{k}} + p'])_{r} + (rw_{0}[e_{\mathbf{k}} + p'])_{z} = \frac{r\overline{\rho}}{N^{2}\overline{\Theta}^{2}} ((\mathbf{\Phi}'_{0}Q_{\Theta,0} + \mathbf{\Theta}'_{1} \cdot \mathbf{Q}_{\Theta,1}) (e_{\mathbf{k}} = \frac{\overline{\rho}u_{\theta}^{2}}{2})$$

$$e_{k} = \frac{\overline{\rho}u_{\theta}^{2}}{2}$$

Symmetric & asymmetric are equally important!

Motivation

Structure of atmospheric vortices I: two scales

(Päschke et al., JFM, (2012))

Structure of atmospheric vortices II: cascade of scales

(Dörffel et al., arXiv:1708.07674)

Conclusions

Convective updrafts

Convection concentrates in narrow towers $\left(\sqrt{\text{CAPE}} \sim 5...30\,\text{m/s}\right)$ (Essentially dry dynamics between towers Comparable average vertical mass fluxes

Spin-up by asymmetric convection

$$\underbrace{\frac{\partial u_{\theta,0}}{\partial \tau} + w_0 \frac{\partial u_{\theta,0}}{\partial z} + u_{r,00} \left(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} + f \right)}_{\text{standard axisymmetric balance}} \left(= - \mathbf{u_{r,*}} \left(\frac{u_{\theta}}{r} + f \right) \right)$$

$$\boldsymbol{u_{r,*}} = \left\langle \boldsymbol{w} \frac{\partial}{\partial z} \left(\boldsymbol{e_r} \cdot \widehat{\boldsymbol{X}} \right) \right\rangle_{\boldsymbol{\theta}} = \underline{\boldsymbol{w}_{\mathrm{upd},11}} \frac{\partial \widehat{X}}{\partial z} + \underline{\boldsymbol{w}_{\mathrm{upd},12}} \frac{\partial \widehat{Y}}{\partial z}$$

Area averaged updraft fluxes take role of heating-induced vertical velocities

Intensification & tilt destabilization

Attenuation / tilt stabilization

Motivation

Structure of atmospheric vortices I: two scales

(Päschke et al., JFM, (2012))

Structure of atmospheric vortices II: cascade of scales

(Dörffel et al., arXiv:1708.07674)

Conclusions

Spin-up by asymmetric heating

$$\underbrace{\frac{\partial u_{\theta,0}}{\partial \tau} + w_0 \frac{\partial u_{\theta,0}}{\partial z} + u_{r,00} \left(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} + f \right)}_{\text{standard axisymmetric balance}} \left(= - \mathbf{u_{r,*}} \left(\frac{u_{\theta}}{r} + f \right) \right)$$

$$\mathbf{u_{r,*}} = \left\langle w \frac{\partial}{\partial z} \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right) \right\rangle_{\theta} = \frac{1}{\underline{d\overline{\Theta}}/dz} \quad Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right) \left(\mathbf{e}_r \cdot \widehat{\mathbf{X}} \right)$$

Radial transport in a tilted vortex induced by asymmetric heating