Lightning in Tropical Cyclones: Applications of the GOES-16 GLM

Stephanie N. Stevenson^{1,2} Mark DeMaria²

¹ CIRA at CSU, Fort Collins, CO
 ² National Hurricane Center, Miami, FL

13 March 2018
72nd Interdepartmental Hurricane Conference
Miami, FL

2017 Hurricane Season from GLM

TC lightning detection: Network pros/cons

	Spatial	Temporal	Performance	Lightning Type	
	Open Ocean	Continuous	High DE	IC	CG
NLDN		✓	✓	some	1
OTD/LIS	✓		✓	1	1
WWLLN	✓	1		some	√
GLD360	✓	1	CG	some	1
ENTLN	✓	✓	varies geographically	some	√
GLM	✓	✓	✓	1	1

History of observational TC lightning research

Patterns of TC lightning: Spatial

 Lightning peaks in inner core and outer rainbands, with minima in between

Molinari et al. 1999

Stevenson et al. 2016

Patterns of TC lightning: Spatial

 Lightning typically occurs downshear, where there is stronger upwards motions forced by the TC vortex response

Reasor et al. 2004

Stevenson et al. 2014

Patterns of TC lightning: Temporal

 Many recent studies link increased lightning to TC intensity change, showing promise for including lightning in intensity forecasting

Price et al. 2009

Patterns of TC lightning: Temporal

- Lightning has significant weight when input as a predictor in the Rapid Intensification Index
 - Especially inner core lightning

Predictors:

POT: SST Potential

SHDC: Shear

D200: Divergence PER: Persistence

PC30: % IR pixels < -30°C TBSTDo: GOES IR brightness temperature standard deviation

OHC: Ocean heat content RHLO: relative humidity

LM02: Average 0–200 km lightning

flash density (inner core)

LM24: Average 200–400 km

lightning flash density (outer bands)

Inner Core

Patterns of TC lightning: Spatial and temporal

Short-term intensity change (< 24 h) associated with lightning outbreaks

TC intensifies

Lyons and Keen 1994 *

Molinari et al. 1994 *

Squires & Businger 2008 *

Pan et al. 2010

Stevenson et al. 2014 *

Zhang et al. 2015

Ranalkar et al. 2017

Molinari et al. 1999

Wang et al. 2016 *

TC Weakens

DeMaria et al. 2012

Jiang and Ramirez 2013

Stevenson et al. 2016

Xu et al. 2017

* case studies

Outer Rainbands

DeMaria et al. 2012

Jiang and Ramirez 2013

Bovalo et al. 2014

Stevenson et al. 2016

Xu et al. 2017

Patterns of TC lightning: Spatial and temporal

 An in-depth look at inner core lightning bursts found those inside radius of maximum wind (RMW) were associated with intensifying TCs

Stevenson et al. 2018

Patterns of TC lightning: Spatial and temporal

- GLM observed an inner core lightning burst inside the RMW at beginning of RI in Hurricane Maria (2017)
 - 80-kt Cat 1 to 135-kt
 Cat 4 in 24 h

Preliminary, non-operational data

Patterns of TC lightning: Spatial and temporal

Also, inner core bursts that rotate <u>upshear</u>
 tend to be associated with intensification

Plans for use of lightning for operational TC intensity forecasts

- Assemble climatological database for statistical models
 - Relate GLM to ground-based networks
 - Preliminary results
 - Rainband region straightforward, inner core more difficult
- Combine with aircraft or satellite radius of maximum wind estimates
- Run experimental rapid intensification index (RII) with lightning input in 2019 season
- Transition to NHC operations for 2020
- Longer term assimilate lightning in dynamical models

New opportunities for TC lightning research

- Ground-based networks used in unison with GLM can help determine intracloud (IC) vs. cloud-toground (CG) flash ratios in TCs
- Some early research suggests IC flashes may increase prior to CG, which may help improve intensity change forecast lead time
- Assimilation of GLM for HWRF and other dynamical models

Summary

- Lightning is observed most frequently during TC intensity change
 - Inner core lightning associated with TC intensification (weakening) if radially inside (outside) the RMW, or rotating upshear
 - Outer rainband lightning mostly associated with TC intensification
- Lightning shows promise for statistical TC intensity guidance
 - Experimental tests planned for 2019
 - Target operational transition for 2020 season