The role of surface fluxes in hurricane intensification through boundary layer recovery

Jun Zhang, NOAA/HRD & U. Miami/CIMAS

A paradigm of energy cycling process tied to shear-induced asymmetry of convection

- As air parcels rotate from the upshear left (UL) quadrant to the downshear right (DR) quadrant, they acquire equivalent potential temperature (θ_e) from surface fluxes;
- Convection is triggered in the DR quadrant in the presence of asymmetric mesoscale lifting coincident with the θ_e maximum.;
- Energy is then released by latent heating in the downshear left (DL) quadrant;
- \blacktriangleright Convective downdrafts bring down cool and dry air to the surface and lower θ_e again in the DL and UL quadrants.

(Jun Zhang et al. 2013 MWR)

SST observations using GPS dropsonde in Hurricane Edouard (2014)

1	1	Ì
20140915	N42	16(15)
20140915	N43	19(12)
20140915	N49	16(0)
20140916	AV6	87(0)
20140916	N42	24(18)
20140916	N43	13(0)
20140917	N42	17(15)

A total of 60 IR sondes were dropped in Hurricane Edouard (2014) with 25 of them paired with AXBTs.

- The boundary layer recovery of lowentropy air through surface fluxes may be a key mechanism for TC intensity change, while the hurricane intensity is correlated to the entropy of the inflow more than the surface fluxes.
- Ocean structure and SST are crucial for determining enthalpy fluxes.

 Can operational hurricane models capture this multi-scale interaction process?