Main Talking Points

- Upwelling responses over ocean eddies are non-linear.
- SST responses are a function of the strength and vorticity of ocean eddies.
- The variability in h₂₆ and OHC over ocean eddies impacts the negative feedback.

Take Home Messages

- Numerical models must correctly represent ocean eddies to correctly simulate upwelling and downwelling responses, sea surface cooling, and ensuing air-sea moisture disequilibrium, enthalpy fluxes, and tropical cyclone intensity.
- This is largely a problem of model initialization, for which direct measurements of the pre- and in-storm ocean states (T, S, V) are critical.

Upwelling Responses over Ocean Eddies are Non-Linear

- Maximum cooling underneath Hurricane Isaac's center: -3 kW m⁻² over a 12-h interval.
- Maximum warming underneath Isaac's left and right sides: 8 kW m⁻² over a 12-h interval.
- Isaac (2012) became a Hurricane over this region of upper-ocean warming (SSTs were above 28°C).

Numerical models must correctly represent ocean eddies to correctly simulate upwelling and downwelling responses.

SST Responses are a Function of the Strength and Vorticity of Ocean Eddies

- Numerical simulation of the response of oceanic geostrophic eddies to tropical cyclone forcing.
- The wind forcing is the same in all experiments (Hurricane Katrina at peak category 5 hurricane).

The correct representation of ocean eddies in numerical models is critical to correctly simulate sea surface cooling.

Ocean Mixed Layer (OML) temperature response (ΔT_{OML}) , based on 79 pairs of collocated pre- and instorm ABXT temperature profiles from eight tropical cyclones.

The Variability in h₂₆ and OHC over Ocean Eddies Impacts the Negative Feedback

- h₂₆ is the depth of the 26°C isotherm;
- We use h₂₆ for estimating the Ocean Heat Content (OHC).

- Fast initiation of the negative feedback over cool ocean eddies (cyclones: CCE2).
- Delayed initiation of the negative feedback over warm ocean eddies (anticyclones: LC and WCE).
- Numerical models must correctly represent ocean eddies to accurately simulate the timing and extent of the SST negative feedback on storm intensity.
- This is largely a problem of model initialization, for which direct measurements of the pre- and in-storm ocean states (T, S, V) are critical.

