

Ronald J. Ferek, Ph.D.

Marine Meteorology Program

TCORF, 2017

TCI-15 Case: ERIKA

Tropical Storm ERIKA Model Track Guidance

Tropical Storm ERIKA Model Intensity Guidance

- 4-day sequence of WB-57 flights dropped high-definition dropsondes (dots) over Hurricane Joaquin
- Strongest Atlantic hurricane in 5 years (Category 4) was poorly predicted by current operational models (P-3 and G-IV Recon was unavailable; SHOUT Global Hawk was down)
- Inbound/outbound segments observed the trough interactions that were bringing a record rain and flooding event to South Carolina

Hurricane Joaquin (2015)

2015-09-28 12Z

COAMPS-TC ENS

68°W

76°W

Longitude

(Courtesy of Jim Doyle)

Day 1-3 (Day 4-5

NHC 15Z official forecast

Hurricane

Trop.Storm

Hurricane

Trop.Storm

TCI Observations over Hurricane Patricia, 23 October, 2015

- 46 high-definition dropsonde sequence (green dots) over the eye of Hurricane Patricia 5-6 hours before landfall; most detailed observations ever collected
- Strongest hurricane ever observed (Category 5) was <u>very poorly predicted</u> by current operational models (48-hr forecast was for Cat 1)

Analyses of Patricia Dropsondes

The high-resolution HDSS profiles during Patricia offer an unprecedented detailed three-dimensional sampling of a full-troposphere hurricane warm core

- Patricia had the largest-ever observed tropical cyclone warm core anomaly ($^\sim$ 22C), leading to the record lowest EPAC/ATL sea level pressure (872 hPa)
- Dropsonde data (potential temp.) was sufficiently detailed to resolve gravity waves

Hurricane Patricia (2015)

The high-resolution HDSS profiles during Patricia offer an unprecedented detailed three-dimensional sampling of a full-troposphere hurricane

- Dropsonde observations gave the best initial condition for Patricia
- Models could not sustain the structure and intensity of Patricia even after DA of these obs.!

TCI-15 Lessons Learned

Erika

- Operational forecasts: Poor for track and intensity
- Failure cause: UNDERSTOOD (global model accuracy generally cannot resolve small track errors relative to the high terrain)
- Excellent case for an <u>ensemble forecast system</u>

Joaquin

Operational forecasts: Very poor for track and Rapid Intensification

Failure cause: NOT FULLY UNDERSTOOD (upstream influence of EPAC TC Marty? Inaccurate global boundary conditions driving mesoscale errors?)

✓ Ensemble system captured the uncertainty of the track and intensity

Patricia

Operational forecasts: Very good for track; very poor for RI (~100 kt error!)

Failure cause: NOT UNDERSTOOD (missing physics in mesoscale models?)

- X Even with excellent obs. and DA, models (and the ensemble) did not capture the structure or extreme rapid intensification
- Improvements are needed in obs. and mesoscale models (still in Basic research)
- In the near term, multi-model ensembles can be exploited for skill improvements and communicating uncertainty
- Longer-range skillful genesis forecasting needs improvements in global models