Guidance on Observational Undersampling over the Tropical Cyclone Lifecycle

David Nolan, UM/RSMAS Brad Klotz, CIMAS/HRD

This work is supported by NOAA through the Joint Hurricane Testbed.

I. Previous Work

• Uhlhorn and Nolan (2012) attempted to determine the typical "underestimate" of peak surface winds from aircraft penetrations with SFMR

They generated hundreds of simulated SFMR profiles by "flying" aircraft through a simulation of Hurricane Isabel (2003).

FIG. 6. Single figure-four (or alpha) flight pattern superimposed on a surface wind field snapshot (m s⁻¹). Aircraft symbols identify initial and final points of the pattern.

Main finding:

The peak SFMR wind reported from a single figure-4 flight pattern will underestimate the peak 1-min wind speed by about 8%.

II. Project Goals

- 1. To apply the same (or improved) methods of Uhlhorn and Nolan (2012) to assess undersampling on a wider variety of hurricanes.
 - → Provide guidance for how much to increase surface wind speed estimates from SFMR observations.
- 2. To use a similar methodology to assess undersampling of minimum surface pressure estimated from dropsondes released in the eye.
 - → Provide improved guidance on surface pressure corrections based on wind speed at splashdown. (NOT COVERED TODAY)
- 3. To use a similar approach to provide estimates of undersampling of surface wind speed provided by scatterometers.
 - → Provide guidance for how much to increase surface wind speed estimates from scatterometer overpasses.

III. Simulation Data Sets

HNR1 - TS

HNR2

Ideal – Cat2

Ideal – Cat5

Wind Speed (ms⁻¹), 09-07-00h00mZ max=73.0 min=0.6 int=2.0

Bill

-57

-56.5 -56

50

40

30

20

10

10m Wind Speed (m/s), 08-06-03h00mZ max=62.2 min=0.3 int=1.00

longitude

IV. Wind Speed Undersampling

8 simulated figure-4s every 3 hours

Mean undersampling of "best track" intensity is 11%

14% during RI

Undersampling seems to be: Greater for larger size, more asymmetry. Less for higher intensity.

Asymmetry = $sqrt(V_1^2 + V_2^2)/V_0$

V. Implementation

• How can forecasters use this information in real time?

Current idea:

	TS	CAT 1-2	CAT 3-5
Small	10%	5%	5%
Medium	15%	10%	5%
Large	20%	15%	10%

V. Implementation

• How can forecasters use this information in real time?

Current results:

	TS	CAT 1-2	CAT 3-5
Small RMW ₁₀ < 30 km	8.9%	5.7%	3.1%
Medium 30 km to 60 km	14.0%	10.6%	6.1%
Large RMW ₁₀ > 60 km	17.8%	10.7%	

VI. Estimates of Scatterometer Undersampling

 \rightarrow Using the horizontal resolution and scanning strategies described in peer-reviewed literature to produce ASCAT-like 10-m wind fields

 \rightarrow Simulating variations in coverage, viewing angle, and rain impacts to better determine wind speed underestimates

Figa-Saldana et al. 2002

