Real-Time, Ensemble-Based Probabilities of Tropical Cyclone Rapid Intensification

Ryan D. Torn, Univ. at Albany, SUNY Mark DeMaria, NOAA/NWS/NHC

Contributions from various Ensemble Modeling Groups, DTC and NHC Forecasters

2017 Tropical Cyclone Operations and Research Forum

Miami, FL

15 March 2017

NOAA Award: NA14NWS4680027

Overview

- Significant effort to develop ensemble dynamical and statistical models
- Most forecasters only use the mean, but is there is additional information in the ensemble distribution itself
- Focus of HFIP Ensemble Tiger Team is new ensemble-based operational products
- Real-time, ensemble-based RI probability of RI similar to SHIPS product
 - 30 kt 24 h⁻¹, 55 kt 48 h⁻¹, 65 kt 72 h⁻¹

Intensity Change Probability

Model	Туре	Real-Time Offset
HWRF (HWMN)	Dynamical (IC + Physics)	12 h
GFDL (GPMN)	Dynamical (IC + Physics)	6 h
COAMPS (COMN)	Dynamical (IC)	6 or 12 h
HWRF Analog (ANEN)	Statistical	6 h
SPICE (RISC)	Statistical	0 h
SHIPS (RIOD)	Statistical	0 h

- Probabilities derived for first four models via counting number of members where condition is satisfied
- Output in ATCF e-deck format

Verification

- Remainder of this talk is on verification of the ensemble probabilities from 2013-2015
 - large number of cases (over water only)
 - HWRF ensemble has smaller sample
- Both raw and interpolated versions of model output are produced
 - XXMN Raw intensity changes
 - XXXI 6 h interpolated intensity changes
 - XXX2 12 h interpolated intensity changes
 - Example: COMN, COMI, COM2

Matthew Example

0-24 h RI Probability

Forecast probability, yi

00-24 h AL RI Reliability

00-24 h EP RI Reliability

00-48 h AL RI Reliability

00-48 h EP RI Reliability

Other Intensity Categories

- Difficult to validate RI probabilities because it is by definition a relatively rare event
- Do any ensemble prediction system have skill predicting other intensity changes? $-\delta \leq -30$ kt 24 h⁻¹ (rapid weakening) -30 kt 24 h⁻¹ < δ <= -10 kt 24 h⁻¹ (weakening) --10 kt 24 h⁻¹ < δ < 10 kt 24 h⁻¹ (steady) -10 kt 24 h⁻¹ <= δ < 30 kt 24 h⁻¹ (intensifying) $-\delta >= 30$ kt 24 h⁻¹ (rapid intensification)

00-24 h AL, Steady

24 hr RI Reliability Diagram

Okt Change Probability BDELTA >-10 and <10, 237 probs (215 non-zero), Basin: al, Model: COM2, Lead: 24

00-24 h Intensifying Reliability

00-24 h Weakening Reliability

Summary

- Ensemble-based probabilistic intensity change was provided to NHC in 2016
- Retrospective forecasts show varied skill at predicting RI
- More skill at predicting smaller amplitude intensity change categories

Evidence of over-confidence

 https://ral.ucar.edu/projects/hfip/d2016/ens RI/

Future Directions

- Increase reliability of forecast delivery
- Understanding what situations lead to over-confidence in the ensemble (i.e., near 100% probabilities)
- Multi-model probabilistic intensity changes (i.e., combination of HWRF, COAMPS-TC)