

MIT Lincoln Laboratory (proposing organization) .

William J. Blackwell, Principal Investigator, Scott Braun (NASA GSFC), Project Scientist

Science Team Members: Robert Rogers, Robert Atlas, Frank Marks, Jason Dunion, NOAA/HRD Mark DeMaria, NOAA/NHC Chris Velden, U. Wisc. Ralph Bennartz, Vanderbilt U.

Tropical Cyclone Operations and Research Forum March 13-16, 2017

Massachusetts Institute of Technology

Broad Mission Overview

- First demonstration that science payloads on low-cost CubeSats can push the frontiers of spaceborne monitoring for Earth system science.
- TROPICS will fill gaps in our knowledge of the short-time scale hourly or less—evolution of TCs. Current capabilities are an order of magnitude slower.
- TROPICS will complement CYGNSS, GPM, and GOES-16 by making rapidrefresh, direct measurements of temperature, humidity, and precipitation

Massachusetts Institute of Technology

CubeSat and Radiometer

12-channel passive microwave radiometer

- 91 & 205 GHz imaging channels
- Temperature sounding near 118 GHz
- Moisture sounding near 183 GHz

3U CubeSat, with 2U spacecraft bus, 1U radiometer, and deployed solar arrays

Spacecraft size (ignoring deployed solar panel size) 10 cm × 10 cm × 34 cm

MIT Lincoln Laboratory (proposing organization) .

William J. Blackwell, Principal Investigator, Scott Braun (NASA GSFC), Project Scientist

How does precipitation structure evolution, including diurnal cycle, relate to the evolution of the upper-level warm core and associated intensity changes?

How does the occurrence of intense precipitation cores (convective bursts) relate to storm intensity evolution?

MIT Lincoln Laboratory (proposing organization) .

William J. Blackwell, Principal Investigator, Scott Braun (NASA GSFC), Project Scientist

How does environmental moisture relate to coincident measures of storm structure (including size) and intensity?

https://tropics.ll.mit.edu

MIT Lincoln Laboratory (proposing organization) .

William J. Blackwell, Principal Investigator, Scott Braun (NASA GSFC), Project Scientist

What will be the impact of microwave radiances and/or retrievals on numerical and statistical model predictions of storm track and intensity?

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY TROPICS Pathfinders: MicroMAS-1, MicroMAS-2, and MiRaTA

MicroMAS = Microsized Microwave Atmospheric Satellite MiRaTA = Microwave Radiometer Technology Acceleration

MicroMAS-1

3U cubesat with 118-GHz radiometer

8 channels for temperature measurements

July 2014 launch, March 2015 release; validation of spacecraft systems; eventual transmitter failure

MicroMAS-2

3U cubesat scanning radiometer with channels near 90, 118, 183, and 206 GHz

12 channels for moisture and temperature profiling and precipitation imaging

Two launches in mid 2017/early 2018

MiRaTA

3U cubesat with 60, 183, and 206 GHz radiometers and GPS radio occultation

10 channels for temperature, moisture, and cloud ice measurements

Launch on JPSS-1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Spatial and Temporal Resolution

	ATMS Nadir/Avg (km)	TROPICS Nadir/Avg (km)
Temperature	33/44	27/40
Moisture & Precipitation	17/24	17/24
Swath width	2250 (±50.5°)	2025 (±56°)

TROPICS resolution comparable to ATMS

TROPICS will provide frequent revisits

	Average (min)	Median (min)
12 satellites	40	25
9 satellites	60	40
6 satellites	75	50

https://tropics.ll.mit.edu

Massachusetts Institute of Technology

Constellation Configuration

CubeSats in 3 orbital planes

Altitude of ~550 km, 30° inclination

Sweet spot between revisit rate and spatial resolution

Launch in late 2019, 1-year science operations Orbit swaths for full constellation of 12

TROPICS coverage over past 30 minutes, updated every 15 minutes

Massachusetts Institute of Technology

Baseline Science Data Products

- L1 Data Products: Calibrated brightness temperatures
- L2 Data Products
 - Retrieved temperature and humidity profiles
 - Precipitation/convection indicators
 - Scattering Index
 - Rain rates
 - Storm intensity estimates (U. Wisc.)

Preliminary Data Volume Estimate

Total mission data (L0-L2): ~43 GB/day per satellite ~15-20 TB mission data per satellite over lifetime

https://tropics.ll.mit.edu

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Requirements and Expected Performance

Product	Threshold Requirement (Uncertainty)	Baseline Requirement (Uncertainty)	Expected Performance (Uncertainty)
Temperature Profile	2.5 K*	2.0 K*	1.6 K
Moisture Profile	35%*	25%*	16%
Rain Rate	50%#	25%#	25%
Min. Sea-level Pressure	12 hPa	10 hPa	8 hPa
Max. Sustained Wind	8 m s ⁻¹	6 m s ⁻¹	6 m s ⁻¹

* Over 3 –km layers

#Relative to GPM IMERG product

Massachusetts Institute of Technology

Potential Science Data Products

L2 Data Products—Storm centric products (being considered)

- L3 Data Products—Gridded products
 - Uniform spatial grid
 - Gridding time interval TBD

Massachusetts Institute of Technology

Ground System and Data Latency

Massachusetts Institute of Technology

- 1st TROPICS Applications Workshop
- May 8-10, 2017
- Rosenstiel School of Marine & Atmos. Sci., University of Miami http://tropics.ccs.miami.edu/

Meeting Objectives

- Introduce end-users to expected value of TROPICS by reviewing mission specifications and status
- Provide a forum for applied researchers and operational decision makers to share insight into how observations from TROPICS can be used in their organizations
- Establish an early adopter community to accelerate postlaunch applications through access to TROPICS mission scientists and proxy datasets

Sponsored by the NASA Applied Science Program

For more information, contact <u>brad.zavodsky@nasa.gov</u> or jason.dunion@noaa.gov

Massachusetts Institute of Technology

Questions?

Examples of ATMS 183±7 GHz Brightness Temperatures

