Algorithm optimization for real-time reporting of hurricane wave field data products measured with the NOAA Wide Swath Radar Altimeter

Ivan PopStefanija
popstefanija@prosensing.com
ProSensing Inc.
107 Sunderland Road
Amherst, MA 01002 USA

Edward J. Walsh
edward.walsh@noaa.gov
NOAA Earth System Research Laboratory
Boulder, CO 80305

WSRA Technology:

- ☐ The WSRA is a digital beamforming radar with an antenna comprised of 64 narrow microstrip subarrays oriented in the along-track direction, and spaced at half wavelength intervals in the cross-track direction.
- □ The radar returns from sequential transmissions on each of 62 of the array elements are collected and coherently combined to produce 80 narrow beams spread over ±30° from the antenna boresight.
- ☐ Width of WSRA swath is about 3.46 km at the typical 3 km (10,000 feet) aircraft altitude.

Operational WSRA Data Products

- Mean Square Slope of the ocean surface
- Rain Rate

4.5 minutes

- Ocean Directional Wave Spectra
- Ocean Significant Wave Height

SWH: 2.6m 2.8m 3.1m 4.8m 5.9m 6.8 m

WSRA Data Flow

Processing, Transfer & Display

=> Real-time Reporting

In-flight processing highlights

- WSRA radar configuration is adaptable to changing aircraft flight level(using AUX INFO)
- Computationally intensive radar signal processing algorithm
- □ Radar return (Level-2 data)
- Surface elevation extraction algorithm
- ☐ Surface topography (Level-3 data)
- WSRA data products processed in-flight in real-time (Level-4 data)
- WSRA data products automatically transmitted from aircraft to FTP site at NOAA/AOC

WSRA Data Flow Processing, Transfer & Display => Real-time Reporting

WSRA Operation Example

- ☐ Hurricane Irene (2011)
 - Three 12-hour missions on August 24th, 25th, & 26th
 - 20110824H
 - □ 20110825H
 - □ 20110826H
 - WSRA operated without ProSensing staff onboard the aircraft
 - After startup by NOAA AOC staff WSRA operated unattended for the entire duration of the flight
- ☐ Hurricane Danny (2015)
 - Three 12-hour missions on August 22th, 23th, & 24th

Archived WSRA Data Products

- Level-3 data Ocean Surface topography and backscatter power
- ☐ Data rate: 10 cross-track surface elevation lines per second
- □ Data volume: 10 G Bytes per hour
- Data stored on WSRA server computer onboard the aircraft.
- Data files are downloaded and archived at the end of the hurricane season

Improving the WSRA Ocean Surface Topography

- Anomalies in the surface topography are most visible during aircraft's high roll maneuvers.
- □ The differences between the two spectra—such as multiple artifact peaks and significant noise in the ocean wave spectra—are easy to observe.
- Ocean wave field over the small area shown would be uniform.
- These artifacts are a result of misplacement of WSRA surface elevation raster lines relative to each other.

Improving the WSRA Ocean Surface Topography

- □ The instantaneous roll of the aircraft is computed from WSRA radar return
- INS aircraft data have update rate of 1 Hz, while WSRA raster lines are produced at 10 Hz rate
- WSRA server computer receives INS data with time lag of about 4 to 5 seconds.
- New improved algorithm:
 - calculate true instantaneous values for north and east ground speed components and pitch by removing the time lag and interpolating the 1Hz data to 10Hz data rate.
 - use the pitch value to improve the accuracy of the absolute location of raster lines calculation.

New methodology for removal of ambiguous artifact lobes in the directional ocean wave spectra (Level-5)

- Initial artifact lobe deletion algorithm predicted the wave component direction at each observation point inside a hurricane and found the spectral variance minimum within ±25° of the perpendicular to that direction, sometimes performing badly.
- New algorithm finds spectral peaks, selects the one closest to the predicted wave direction for that wavelength and deletes the opposite lobe as the artifact.

New methodology for removal of ambiguous artifact lobes in the directional ocean wave spectra (Level-5 data).

New methodology:

- focus on spectral maxima.
- spectral components for each ocean wave field spectrum would be transferred as a unit to the output spectrum rather than possibly being split into pieces.

Archived WSRA Data Products

Level-4 data

Level-5 data

- Level-4 and 5 data available during recon flight on NOAA AOC FTP site
- Stored in self-descriptive netCDF format
- □ Data rate: 100 Byte/s
- □ Data Volume: 4 Mbyte per 12-hour reconnaissance flight

Value of WSRA Data Product

- □ The WSRA directional ocean wave spectra—important information about the air-sea interface—are produced every 4 minutes and 16 seconds.
- That makes the WSRA a unique instrument that routinely documents the rapid spatial variation of sea surface inside the evolving hurricane.
- WSRA data users:
 - Hurricane forecasting
 - Real-time knowledge of the wave field parameters should improve the hurricane intensity forecast
 - Ocean Wave Models
 - verification and improvements using WSRA observations of temporal and spatial evolution of wave field
 - Storm Surge forecast
 - verification and improvements using WSRA measurement of storm surge of landfalling hurricanes
 - ☐ This WSRA measurement technique has been shown to be feasible, but has yet to be implemented