
2017 Tropical Cyclone Operations and Research Forum (TCORF) 71st Interdepartmental Hurricane Conference (IHC) Miami, FL – 14-16 March 2017

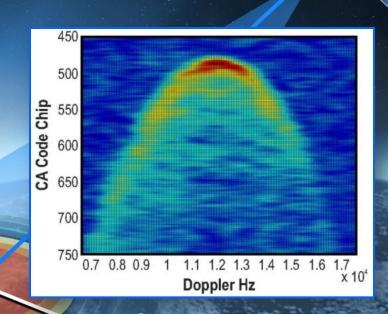
NASA CYGNSS Satellite Constellation for Tropical Cyclone Observations

<u>Chris Ruf</u>¹, Scott Gleason², Aaron Ridley¹, Randy Rose², John Scherrer²

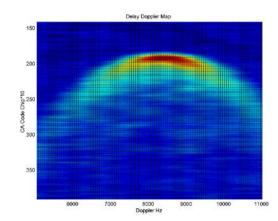
- 1. University of Michigan, Ann Arbor, MI
- 2. Southwest Research Institute, Boulder, CO

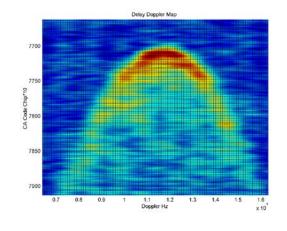
CYGNSS Mission Overview

- The NASA Cyclone Global Navigation Satellite System (CYGNSS) Mission consists of 8 microsatellites, each with a 4-channel GPS bi-static radar receiver
 - Mission lead/Science Ops (University of Michigan)
 - Spacecraft/Integration/Mission Ops (Southwest Research Institute)
- The driving science objective is rapid sampling of ocean surface winds in the inner core of tropical cyclones
- CYGNSS uses a new measurement technique and a new satellite mission architecture
 - Measure the distortion of GPS signals scattered from the ocean surface to determine ocean surface roughness and wind speed
 - Use small satellites so many can be flown to improve sampling

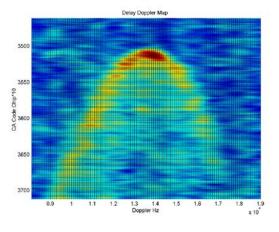


Direct Signal CYGNSS Observatory




Specular Point

Spaceborne Empirical Demonstration of Ocean Wind Speed Retrievals by GNSS-R


GNSS-R instrument (early version of CYGNSS science payload) deployed on UK-DMC-1 mission, launch 2003

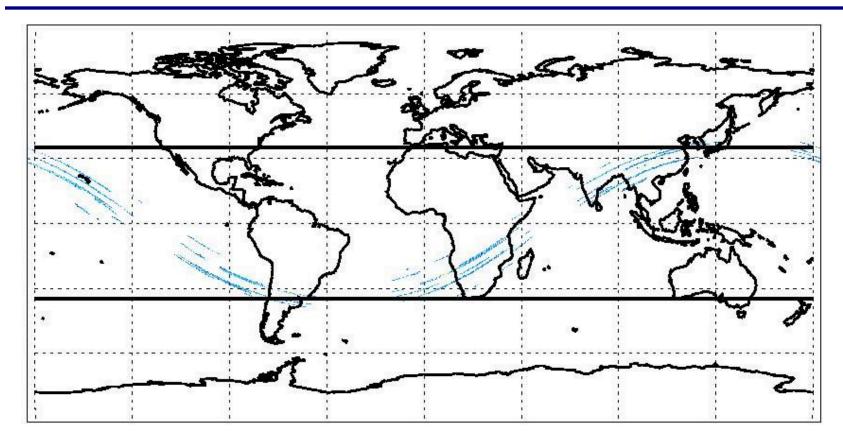
Winds ~ 2 m/s

Winds 7 m/s

Winds 10 m/s

Level 1 Baseline Mission Science Requirement

Sci Rqmt #	Requirement
1	3 m/s to 70 m/s at 5 km x 5 km resolution
2	Operation in presence of rain
3a	10% retrieval uncertainty for winds > 20 m/s
3b	2 m/s retrieval uncertainty for winds < 20 m/s
3c	Spatial Resolution of 25 km x 25 km or better
4a	100% duty cycle during science operations
4b	Mean temporal resolution less than 12 hours
4c	24 hour spatial sampling covering 70% or more of the cyclone historical track
5	Calibrate and validate CYGNSS data in individual wind speed bins above and below 20 m/s
6	Support operational hurricane forecast community



CYGNSS Spatial Sampling Over 24 Hours

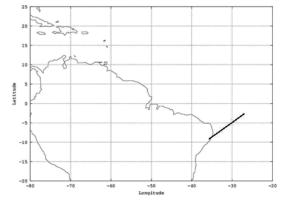
• Revisit time: 2.8 hr (median), 7.2 hr (mean)

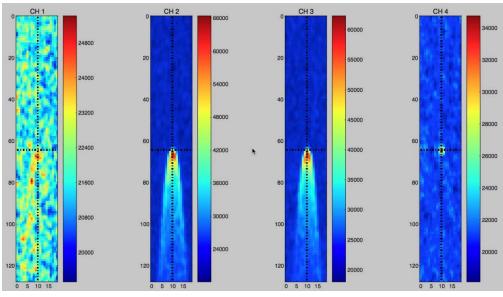
Observatory Fabrication and Testing

Pegasus Installed on L-1011 Aircraft

Observatory Separation

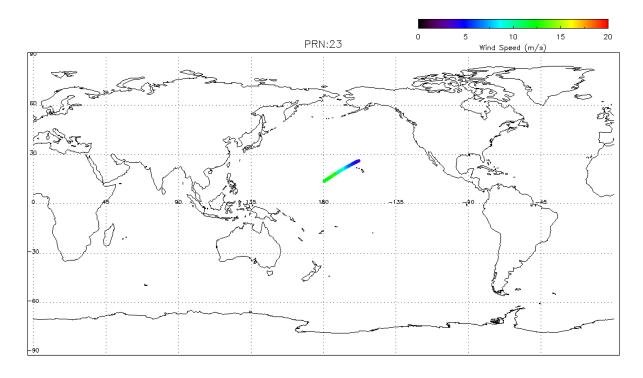
(simulation)





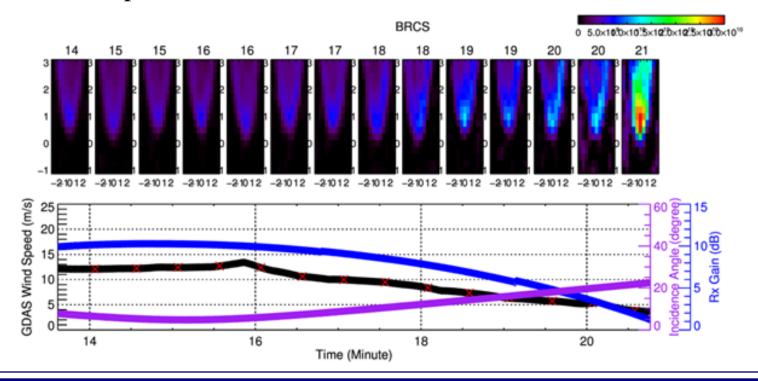
CYGNSS "First Light" Science Data

- The first CYGNSS science instrument was turned on while spacecraft FM03 was crossing the eastern coastline of Brazil on 4 January 2017.
- First Light Delay
 Doppler Maps
 (DDMs) measured
 during 4 Jan 2017
 coastal crossing. CH1 3 are ocean
 reflections. CH4 is
 land reflection.



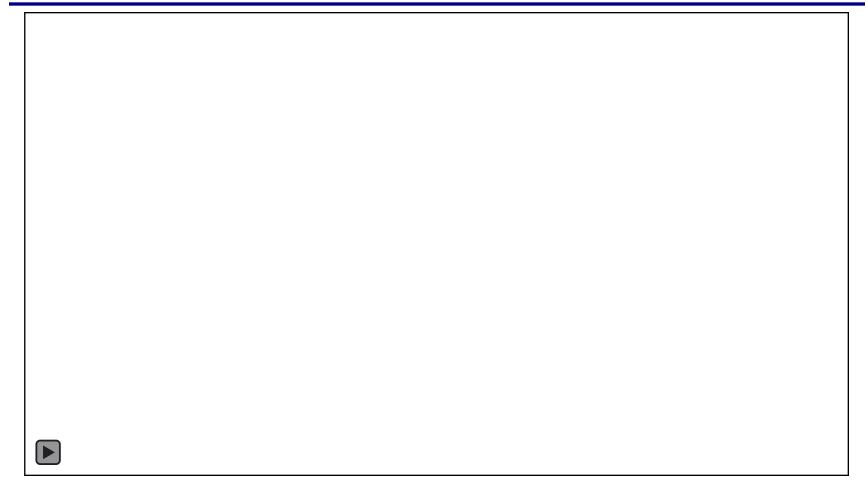
First Ground Truth Matchup (1) (FM06 on 21 Jan 2017)

- Location of specular point shown
- Color coded by coincident GDAS wind speed
- Dynamic range of wind speed over the interval is 4-12 m/s



First Ground Truth Matchup (2) (FM06 on 21 Jan 2017)

- Sequence of DDMs of Bistatic Radar Cross Section (BRCS)
- Matchup with coincident GDAS winds shown below (in black)
- Decreasing wind speed (from left to right) coincides with increase in BRCS, as expected



Storm Intersection Forecast Tool Hurricane Matthew Simulation

CYGNSS Mission Status and Plans

PAST

- Launch 15 Dec 2016 at 08:37 EST
 - Observatories in "safe mode", sun-pointed with only essential systems powered on
- Transition to nadir-point and turn on science instruments **FUTURE**
- Mar 2017: complete engineering commissioning
- Apr May 2017: Initial validation of Level 1 DDM calibration and Level 2 wind speed retrieval algorithm
- Mid May 2017: First public release of DDM and wind speed data products to NASA PO.DAAC
- Dec 2017 Feb 2018: Cal/Val with 2017 Atlantic hurricane season ground truth

Thank You

for more information visit http://cygnss-michigan.org

or contact Chris Ruf, cruf@umich.edu