

Evolution of the USGS Storm Tide Network

Jeanne C. Robbins
John W. Fulton
Ronald Busciolano
Robert R. Mason, Jr.

U.S. Department of the Interior U.S. Geological Survey

Presented to:
69th Interdepartmental Hurricane Conference
Tropical Cyclone Research Forum
Jacksonville, Florida
March 2 – 5, 2015

Monitoring Inland Storm Tide History

- Monitoring was a post-event activity by collection of High Water Marks (HWMs)
- Many issues with HWMs
 - Difficult to identify
 - Difficult to accurately survey
 - Water elevation can vary due to:
 - Physical appearances
 - Continuity
 - Proximity to landfall

Alternatives to High Water Marks

Proposal for an extensive network of crest-stage gages in 2005

Clamp attached with 2-1/2" expandable anchors. Typical 3-4 inch drill depth.

Hurricane Katrina

Mobile Storm-Tide Monitoring

Networks

Hurricane Rita

Hurricane Rita Deployment

47 sensors deployed 34 water level & 13 barometric pressure

Storm Tide Sensor vs. HWM

Calcasieu River, SW LA

Average velocity (ft/s) between sites

8.7, 5.1 & 2.8 ft/s

Storm-tide at 12:00 am

Monitoring Inland Storm Tide Planning for Deployments

Standard Operating Procedures

USGS Water Science
 Centers and Storm Tide
 Centers along the Gulf
 and Atlantic Coasts

Monitoring Inland Storm Tide Planning for Deployments

- Mobile network of temporary gages
- Small, inexpensive, portable
- Late pre-landfall deployment
- Dense network
- Rapid recording intervals
- QA against HWMs
- Level-in to datum after storm
- Collaborate to build complementary datasets

Monitoring Inland Storm Tide Planning for Deployment

Deployments largely based on:

- Forecasted surge
- Past deployment locations
- Pre-planned and opportunistic additional locations
- Collaboration with other agencies

Sensor Deployment - Technology

- Unvented pressure transducers can record temperature and pressure for 8 days at 30 second intervals
 - Mobile
 - Self-contained
 - Relatively inexpensive
 - Accurate (0.01 ft)
- Secured in steel-pipe housing units
- Entire hydrograph—not just peak

Sensor Deployment

- Generally 2-person crews
- Deploy 24-36 hours prior to landfall
- Strap-on sensors, mark
 Ref Pts, take pictures, get
 GPS coordinates
- Check-in each hour
- "Clear out" at 12 to 24 hours to landfall

Sensor Recovery

- Retrieve sensors, flag
 HWMs, tape-down to H₂O,
 run local levels, download,
 adjust data for barometric
 pressure, salinity, and
 upload to web
- Follow-on GPS crews determine local datum for corrected data adjustment

Monitoring Inland Storm Tide History of Deployments

Rita (2005)

Wilma (2005)

Ernesto (2006)

Gustav (2008)

Hana (2008)

Ike (2008)

Earl (2010)

Irene (2011)

Isaac (2012)

Sandy (2012)

Monitoring Inland Storm Tide Irene Deployment

- Storm Tide Sensors
 - USGS at 212 locations
 - UNC Sea Grant and UNC IMS at 13 locations
- Independent HWMs at 137 locations (104 in North Carolina)

Monitoring Inland Storm Tide Sandy Deployment

- Storm Tide Sensors
 - USGS at 230 locations
 - 9 Wave Height Sensors
 - 8 Rapid Deployment Gages
- Independent HWMs also flagged at more than 900 locations

Post Sandy Developments and Response

- USGS Science Plan for Support of Restoration and Recovery
- Theme 1: Coastal Topographic and Bathymetric Data to Support Hurricane
- Theme 2: Impacts to Coastal Beaches and Barriers
- Theme 3: Impacts of Storm Surge, Including Disturbed Estuarine and Bay Hydrology
- Theme 4: Impacts on Environmental Quality, Including Exposure to Chemical and Microbial Contaminants
- Theme 5: Impacts to Coastal Ecosystems, Habitats, and Fish and Wildlife

Theme 3 – Development of SWaTH Storm Wave and Tide Hydrodynamic Network

- Sites are pre-determined and presurveyed, many with installed fixed-place brackets for easy storm deployment and recovery.
- Non-vented pressure transducers deployed in advance of storms within pipe housings of varying lengths from 2 to 12 feet in order to capture entire tidal cycle.
- Uses advanced sensors collecting data at up to 4 Hz (4 times per second) to both capture tide and wave.

SWaTH Network Design and Implementation

- Increase real-time footprint with the development of more robust and easy to install rapid-deployment gages.
- Storm-deployed rapid-deployment gages will transmit tide stage and meteorological data over GOES satellite every 15 min, or more frequently as needed.
- Installation of additional long-term coastalmonitoring stations in areas currently lacking coverage.
- Network developed to complement existing data collection by NOAA, USGS, and others.

RDG installed on bridge over State Boat Channel at Captree Island, NY for Hurricane Irene.

SWaTH Network Enhancing Past Monitoring

- Expands upon the existing USGS storm-tide program.
- Developed for Northeast Coast from North Carolina to Maine.
- Expanded to include deployment for major Nor'easters, in addition to tropical systems.
- Collaborative effort with Federal, State and local partners, emergency managers, coastal researchers, and modelers.
- Includes both long-term and temporary stations operated by the USGS and other partners.

SWaTH Network

- Entire proposed network consists of about 900 sites or locations:
 - 75 non-USGS stations,
 - 115 coastal stations/tidal streams,
 - 530 storm-tide/wave sensors,
 - 85 rapid-deployment gages,
 - 30 tidal crest-stage gages,
 - 65 temporary barometric-pressure sensors.
- Not all stations will be fitted with sensors for any one storm.
- Data distributed through an online mapper in near-real time or as data is collected.

SWaTH Network Data Dissemination

Short-Term Network (STN) Mapper:

- Provide real-time data before, during, and after storm.
- Processing of storm tide and wave data performed seamlessly and available on mapper soon after the event.
- Mapper includes site data, hydrologic-data files, hydrographs, and photographs.
- Includes links to non-USGS data.
- Can be delivered directly into other operational computers using web services.

SWaTH Network Opportunities

- Validate riverine flood forecasts
- Overwash and storm-surge modeling
 - Wave metrics
 - Water quality
 - Water velocity
- Coastal resiliency assessment
- High water mark assessments and re-evaluations
- Enhanced early warning
- Collaborative observing system for coastal hazards and ecosystem health.

USGS SWaTH Network

For More Information:

Jeanne Robbins
U.S. Geological Survey
South Atlantic Water Science Center
Raleigh Data Unit
3916 Sunset Ridge Road
Raleigh, NC 27607
(919) 571-4017

http://nc.water.usgs.gov

jrobbins@usgs.gov

