

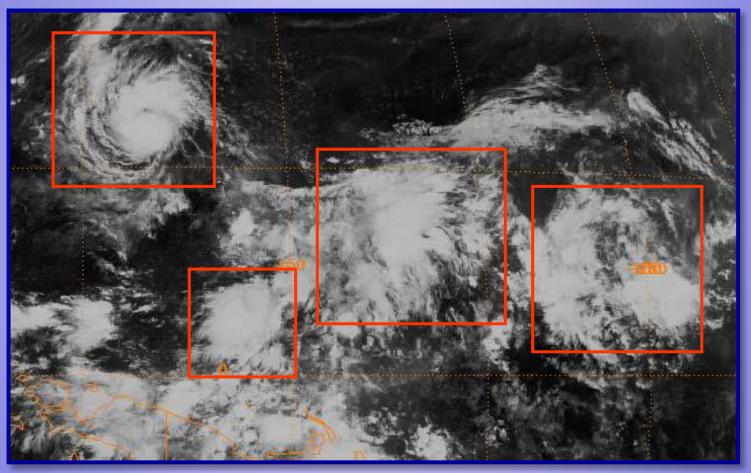
The Deviation Angle Variance technique:

Pre-genesis cloud cluster tracking for Genesis detection and prediction

by

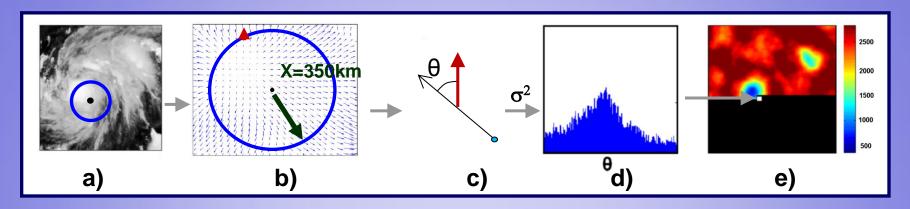
Elizabeth A. Ritchie, Oscar G. Rodríguez-Herrera, Kimberly M. Wood, and J. Scott Tyo

Funded by the Office of Naval Research Marine Meteorology Program

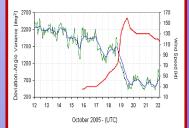


The Challenge ...

Western North Pacific



The DAV Technique ...

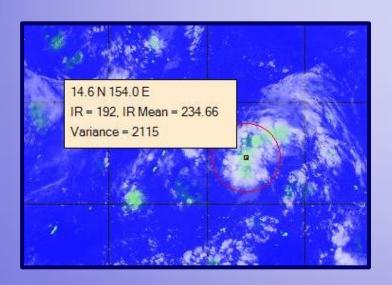


- a) Calculate gradient of the brightness temperatures of IR image of interest
- b) For a chosen center point draw radials to all pixels within a radius X.
- c) Calculate the angle between the radial and the gradient at all pixels
- d) Plot a frequency histogram of the angles and calculate the variance
- e) Map the variance back to the center pixel location.

Note: higher variance \rightarrow greater disorganization \rightarrow lower intensity lower variance \rightarrow greater organization \rightarrow higher intensity

Intensity: require 9 pixels around a specified center location (9-pixel average)

<u>Genesis</u>: require the full map of variances – locate regions where the variance falls below a statistically-determined threshold value for a detect.



Automatic Tracking (AT) ...

- a) Initial detect using a DAV threshold of 2000 deg²
- b) Next detect must occur within 24 hr and 500 (350) km of previous to be related
- c) CC exist for at least 48 (72) hours
- d) Detect (invest) is dropped if DAV goes above 2000 deg² for > 24 hour
- e) A minimum average T_B threshold must also be met
- f) Two-threshold requirement: detect is considered positive if DAV subsequently falls below a 2nd threshold of 1750 deg²

Automatic Tracking (AT) ...

Validation in western North Pacific

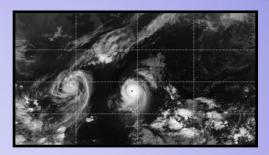
Tracking System	JTWC		Auto Tracking		# that correspond	
Season	# DEV	# NDEV	# DEV	# NDEV	# DEV	# NDEV
2009	23	44	23	49	23 (100%)	15
2010	19	77	17	49	17 (89%)	15
2011	20	44	19	30	19 (95%)	7
2012	20	39	16	23	16 (80%)	8

- Comparison with JTWC invest and best-track databases 2009-2012
- 75 of 82 developing TCs were correctly identified
- JTWC identified 204 non-developing CCs
- Automated tracking identified 151 non-developing CCs
- 45 corresponded between JTWC and DAV.

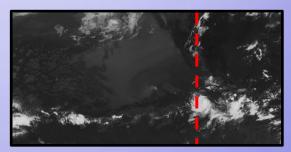
AT for Genesis

Automatic Tracking and Genesis – two threshold system

**Atlantic and Gulf of Mexico (GOES-E)


- original development using this basin
- Manually tracked
- reported on at previous IHC

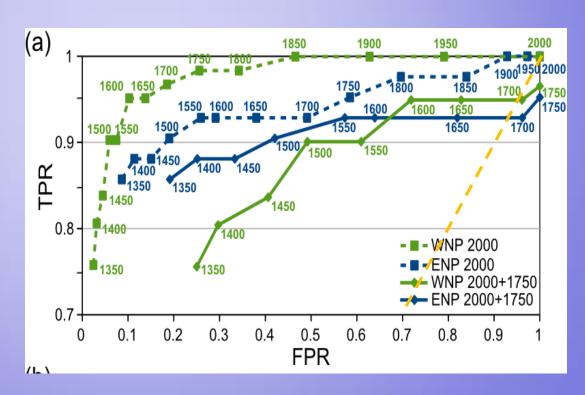
Western North Pacific (MTSAT)


- 3 years: 2009-2011
- hourly images
- 59/61 TCs detected
- 128 non-developing CCs

Eastern North Pacific (GOES E/W)

- · 3 years: 2009-2011
- ½-hourly images
- 40/42 TCs detected
- 187 non-developing CCs

Detecting Genesis

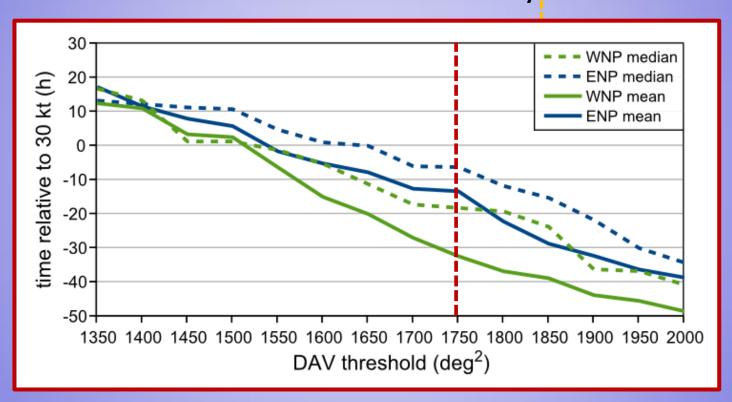


west NPAC and east NPAC - 1- and 2-threshold results

- Single threshold: DAV=2000 deg²
- Double threshold: DAV = 2000 deg² and 1750 deg²
- All CCs that meet 2nd threshold are "positive". All others are "negative".
- Check if correct "True/False positive True/False negative"
- Plot:

$$PoD = \frac{\#TP}{\#TP + \#FN}$$

$$FAR = 1 - \frac{\#TN}{\#TN + \#FP}$$



Detecting Genesis

Also accumulate the detection times of the "true detects" and compare to first entry of "30-kt" in the best track archive. Chosen for better consistency ...

Western North Pacific: -32 hr

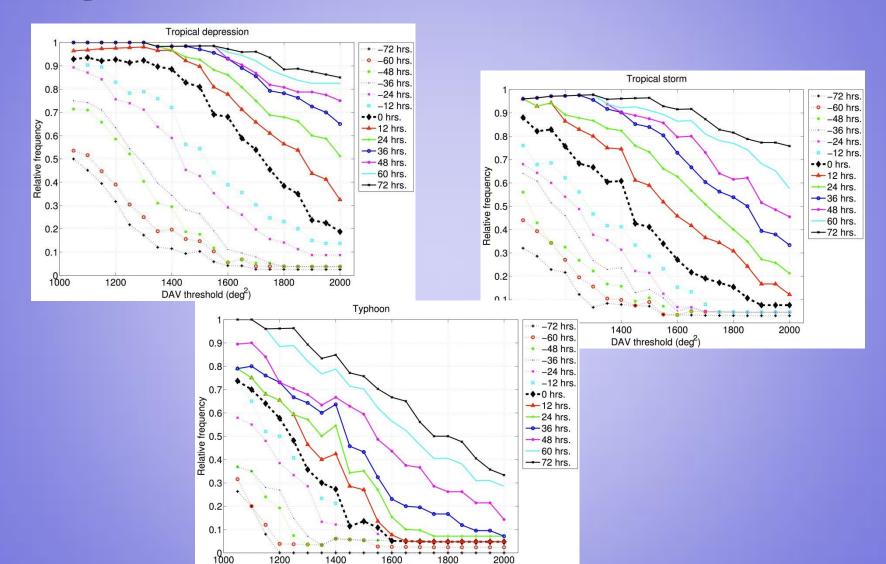
- Eastern North Pacific: -10.6 hr

 Earlier detection times for higher thresholds with higher false alarm rates.

Work in Progress

Probabilistic Genesis

- A large amount of DAV information can be processed to calculate relative frequencies develop probability of genesis in XX hours given values of DAV have been met.
- Compute the % of CCs detected by the tracking system that develop into a TC as a function of the DAV threshold and the time spent below this threshold
- Compute the conditional relative frequency of development, for a set time to detection at each DAV threshold for:
 - tropical depression
 - tropical storm
 - typhoon


given that the disturbance developed into a TC according to the JTWC best track.

Probabilistic Genesis

1200

DAV threshold (deg²)

Detecting Genesis - summary

- Can use minimum DAV within a disturbance to determine whether it is developing or not based on a pre-determined threshold value
- Currently deterministic "yes/no" decision
- Are developing a probabilistic approach, e.g.,
 - 50% chance of developing into a TD/TC/STC within X amount of time based on reaching certain threshold DAV values.
 - These values are determined by determining the conditional relative frequency of development into a TD/TC/STC given a certain DAV value (lots of number crunching)

