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N5 - Assimilation of CYGNSS data with GSI almost always improves hurricane
1 intensity and track analyses
°‘" Assimilation of CYGNSS data with GSI always improves large-scale
analyses of wind, pressure, temperature, height, etc. from the surface
e through upper troposphere
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Fig 3. Basic flow chart of the regional OSSE framework. (c), and the REAL_SPD run (d) at 3 Aug 1200 UTC. Although not ideal, c) and d) are better analyses than that from the CONTROL run. forecasts with HWRF in short lead times
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