Rapid Evaluation of Hurricane-driven Storm Surge Using Pre-computed ADCIRC Solutions Brian Blanton, Rick Luettich, Jesse Bikman University of North Carolina at Chapel Hill Alexander Taflanidis, Andrew Kennedy University of Notre Dame 68th IHC, March 6, 2014 Research Priorities of the Operational Centers #### The Issue - Short forecast windows - Forecast cycle typically 6 hours - Need information well within this 6-hour window - Want guidance information ASAP - High-resolution, dynamic surge & wave simulations are resource intensive - Typical 2.5 3 hours run time on 192 processors - Multiple member ensemble requires more - How to accelerate model throughput - Much more computer hardware (someday...) - Take advantage of pre-computed, high resolution solutions (e.g., Surge Atlas) #### Our Approach – Surrogate Models Inputs Predictor Output Model Prediction Model Conceptual Model Inputs **Outputs** Dynamic Model NHC Water **ADCIRC Dynamical** Forecast **ADCIRC** Level/Wave Advisory **Predictions** Compute-expensive @ high spatial resolution NHC Water Surrogate Statistical Model **Forecast** Level/Wave **Statistical** Model AdcircLite-NC Advisory **Predictions** Comparatively cheap @ high spatial resolution (once the Surrogate Model is developed) ## Surrogate Modeling Implement a surrogate model that rapidly predicts a response (storm surge, waves) using familiar variables (hurricane parameters) - Surrogate models approximate complex systems - Replace ADCIRC with AdcircLite - Leverage existing database of high-resolution storm surge simulations - recent FEMA coastal National Flood Insurance Program Study for North Carolina - similar FEMA NFIP databases available for other areas - Supplement existing databases as desired / needed - Results look like and distributable via standard protocols, e.g., THREDDS servers #### AdcircLite Surrogate Model #### Response Surface Method - Long history in engineering, chemistry... - More recently used for storm surge JPM OS D. Resio; also J. Irish - AdcircLite uses 2nd order moving least squares - Much better accuracy compared to zeroth-order methods ### Response Surface Method #### 2nd order moving least squares Hawaii Wave Prediction Example, from Taflanidis et al (2012) ## Response Surface Methods #### 2nd order moving least squares Storm Surge Prediction Example Oth order nearest neighbor 2nd order Moving Least Squares ## NC - Hurricane/Surge Database 648 hurricane tracks and surge/wave responses on an ADCIRC grid Central pressure deficit (D_p) Storm forward speed (V_f) Radius to maximum winds (R_m) Holland B shape parameter (H_B) Latitude Crossings (Lat 1, Lat 2) #### **Storm Population** ## **Prediction Tests** - Surrogate model computed on full ADCIRC domain - Prediction of one particular storm omitted from model #### **Prediction Tests** - RMSE at each node for all omitted storms - Overall, small RMSE (< 15 cm) #### Historical Storm Results - Isabel 2003 #### Maximum Water Level #### AdcircLite-NC Model Prediction 4 secs to compute #### **FEMA Validation Study** • ~6 hrs to compute #### Historical Storm Results - Isabel 2003 ## Maximum Significant Wave Height #### Ongoing Activities - Extensive , validation/verification study against historical events - For surge and waves - Extending to inundation - Embedding in Forecast System, functionally equivalent to ADCIRC - Output is the same format described in previous JHT talk (CF-UGRID) - Results will be available on the web and from within AdcircViz (2015) Rapid Forecasting AdcircLite-NC IHC 2014 ### **Ongoing Activities** - Ensemble Forecasting with AdcircLite - Method to perturb NHC forecast track - Outputs ADCIRC fort.22 files - Basic parameter variation, test distributions for RMW, Heading, Forward Speed - 135 ensemble members (5*7*3) ## Ongoing Activities Hurricane Irene (2011), Advisory 24 ## Conclusions - Surrogate modeling approach can fill a storm surge / wave prediction gap between coarse resolution (fast) and high resolution (slow) dynamic models - AdcircLite Moving (Local) Least Squares Response Surface Method - Robust and fast once surrogate model is defined - Quantifiable error estimates can be obtained - Simple to run once surrogate model defined - Provides a mechanism to develop large, ensemble-based (probabilistic) high-resolution water level predictions