

Outer Vortex Wind Structure Changes during and following Tropical Cyclone Secondary Eyewall Formation in the Atlantic

Robert Stenger & Russell Elsberry

Graduate School of Engineering and Applied Sciences Department of Meteorology Naval Postgraduate School Monterey, California

Interdepartmental Hurricane Conference, 6 March 2014

- Motivation
- Methodology
- Characterization
- Mechanisms for Structure Change
 - Secondary Eyewall Formation
- Summary
- Future Work

Motivation

- U.S. emergency managers require warnings of arrival of <u>></u>34 kt winds (and heavy precipitation)
 - Complete all disaster preparedness activities
 - Complete appropriate evacuations
- Storm surge predictions depend on outer wind profile as well as intensity
 - Hurricane Katrina (2005) surge well to right of the path
- Large size (R₃₄) increases prior to landfall
 - Reduced warning time and delay search/rescue operations
 - E.g., an increase of R₃₄ by 100 km for a storm moving 10 km/h will result in 10 h reduced warning time

Methodology Data Set of Surface Wind Analyses

Hurricane Katrina 1200 UTC 28 AUG 2005

Max 1-min sustained surface winds (kt) Valid for marine exposure over water, open terrain exposure over land Analysis based on CMAN from 0900 - 1500 z; AFREC from 0907 - 1459 z; QSCAT from 1215 - 1128 z; SHIP from 1208 - 1312 z; MESONET from 1418 - 1458 z; GPSSONDE_WLI50 from 0900 - 1458 z; METAR from 0915 - 1500 z; ASOS from 0904 - 1500 z; MOORED_BUOY from 0909 - 1459 z; 1200 z position interpolated from 1104 Army Corps; mslp = 908.0 mb

Observed Max. Surface Wind: 139 kts, 14 nm NE of center based on 1422 z AFREC sfc measurement Analyzed Max. Wind: 139 kts, 14 nm NE of center Experimental research product of NOAA / AOML / Hurricane Research Division

- NOAA/AOML/Hurricane Research Lab -- Hurricane Wind Analysis System (H*Wind; Powell et al. 1996, 1998)
- Horizontal grid spacing 6 km in 920 km by 920 km domain centered on the storm
- Incorporates all available surface wind observations and dropsondes
- Stepped Frequency Microwave Radiometer (SFMR)
- Reconnaissance aircraft flight-level winds adjusted to the surface
- QuikScat, TRMM, GOES cloud-drift winds

Characterization

Tropical Cyclone Life Cycle Stages

Interdepartmental Hurricane Conference, 6 March 2014

- 35 Atlantic and 3 eastern North Pacific tropical cyclones during 2003-2005
- 564 H*Wind analyses
 - 508 cases with dropsondes
 - 470 cases with recon aircraft flight-level wind reductions (FLR) to surface
 - 135 cases with SFMR observations
- Interpolation on 6 km grid to find values of R_{34} , R_{50} , and R_{64} in four quadrants and azimuthal average

Observed Outer Wind Structure Changes

Characterization

- Axisymmetric wind structure is computed along 24 equally-spaced radial legs interpolated on 6 km grid
- All quadrants in which the 34-kt wind radius intersects
 land are eliminated
- Hypothesis test is whether axisymmetric R_{34} increases and decreases are directly correlated with intensity increases and decreases during the life cycle stages
- Modified Rankine vortex (vr^X = constant) was used as a tool to assess structure change

- Mode 1 example Case of Ivan-4 complete eyewall replacement
- Net R_{max} increase: 20 km
- Net R₃₄ increase: 59 km
- Exponent *x* of modified Rankine vortex: $0.52 \rightarrow 0.50 \rightarrow 0.50$
- V_t decrease consistent with R_{max} increase
- R_{max} increase offsets V_t decrease for net R_{34} increase

- Mode 2 example Katrina complete eyewall replacement
- Net R_{max} increase: 18 km
- Net R₃₄ increase: 71 km
- Exponent *x* of modified Rankine vortex: $0.31 \rightarrow 0.64 \rightarrow 0.43$
- V_t decrease inconsistent with R_{max} increase
- R_{max} increase and V_t increase result in net R_{34} increase

(Stenger 2013; Stenger & Elsberry 2013)

Storm	Pre-SEF				Post-SEF					
	V _{max} (m s ⁻¹)	R _{max} (km)	x ₁	R ₃₄ (km)	V _{max} (m s ⁻¹)	R _{max} (km)	x ₂	R ₃₄ (km)	ΔR_{34} (km)	ΔR_{34} (x ₂ =x ₁)
Mode 1										
Ivan-2	53	17	0.46	208	63	18	0.46	307	99	109
Wilma	61	6	0.36	220	50	30	0.45	329	109	392
Ivan-4	59	25	0.52	289	51	38	0.50	346	57	41
Rita	54	18	0.40	321	45	36	0.42	373	52	87
Mode 2										
Ivan-3	49	18	0.36	333	58	40	0.57	347	14	869
Katrina	42	16	0.31	275	46	34	0.43	346	71	547
Fabian	46	26	0.39	321	38	55	0.43	341	20	99
Frances	38	18	0.29	271	53	38	0.54	309	38	1629

- Large size changes can occur over a short time period for Mode 1 events which may reduce the time available for disaster mitigation activities
- Whereas the ratio of post-SEF R_{max} to pre-SEF R_{max} is larger for Mode 2 events (2.94 for Mode 2 compared to 1.74 for Mode 1), the outer wind structure increases are notably smaller
- Axisymmetric (and quadrant by quadrant) R_{34} changes are more complicated than simple conceptual model that directly correlates R_{34} changes to intensity changes

Future Work

- Expand the current research results by using the additional H*Wind data since the 2005 hurricane season
 - Funded by Office of Naval Research
- Additional research is required to understand the dynamic and thermodynamic processes leading to the sharpened outer wind profile

Questions

- Elsberry, R. L., T. D. B. Lambert, and M. A. Boothe, 2007: Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. *Wea. Forecasting*, **22**, 747-762.
- National Oceanic and Atmospheric Administration, cited 2007: Background on the HRD surface wind analysis system. [Available from http://www.aoml.noaa.gov/hrd/.]
- Naval Research Laboratory, cited 2007: Tropical cyclone satellite imagery archive. [Available from http://www.nrlmry.navy.mil/TC.html.]
- Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew's landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. *Wea. Forecasting*, **11**, 304-328.
- Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. *J. Wind Eng. Ind. Aerodyn.*, **77-78**, 53-64.
- Stenger, R. A., 2013: Assessment of tropical cyclone structure variability. Ph.D. dissertation, Naval Postgraduate School, Monterey, CA 93943, 315 pp.
- Stenger, R. A., and R. L. Elsberry, 2013: Outer vortex wind structure changes during and following tropical cyclone secondary eyewall formation. *Tropical Cyclone Research and Review*, **2(4)**, 196-206.