Multi Lead-time Statistical Rapid Intensification Guidance

J. Kaplan (NOAA/AOML/HRD), C.M. Rozoff (UWisc-CIMSS), C.R. Sampson (NRL), J.P. Kossin (NOAA/NCDC), C.S Velden (UWisc-CIMSS), M. DeMaria (NOAA/NESDIS)

Computer programming support: P. Leighton (NOAA/AOML/HRD)

NHC JHT points of contact: C. Landsea, E. Blake, S. Stewart

This research was funded, in part, by the NOAA/OAR's Joint Hurricane Testbed (JHT) and NOAA/NESDIS GOES-R Risk Reduction Programs

Presented March 6, 2014 at 68th IHC/Tropical Cyclone Forum

Background and Motivation

- Predicting episodes of tropical cyclone (TC) rapid intensification (RI) remains one of NHC's top forecasting priorities.
 - To aid in forecasting RI, a statistically-based rapid intensification index (RII) was developed for the Atlantic and E. Pacific basins (Kaplan and DeMaria 2003, Kaplan et al. 2010, Kaplan et al. 2011).
 - The SHIPS-RII employs environmental and a few inner-core GOES predictors to estimate the probability of RI from t=0 to t=24 h utilizing linear discriminant analysis. The SHIPS-RII is currently used operationally by the NHC.

Recently Completed JHT Project Goals

- Improve the forecasting utility of existing operational SHIPS-RII by:
 - Developing new multi-lead time (12-h, 24-h, 36-h, and 48-h) ensemble-based RI models that employ the SHIPS-RII and recently developed Bayesian and Logistic regression RI models (Rozoff and Kossin 2011).
 - Utilized new multi-lead time ensemble RI models in recently developed deterministic rapid intensity aid guidance (Sampson et al. 2011).
 - Deriving new microwave- based versions of the RII (See talk by Rozoff et al.).

Multi Lead-time Ensemble RII

- New multi-lead time ensemble versions of RII were derived using 1995-2012 SHIPS developmental data at lead times of 12-h, 24-h, 36-h and 48-h for both the Atlantic and E. Pacific basins.
- The ensemble RII is the average of SHIPS, **Bayesian, and Logistic versions of the RI model** (Rozoff and Kossin 2011).
- Multi-lead time ensemble RII was run in real-time at CIRA in Colorado (with forecasts made available to NHC forecasters via a website) from ~August 1 to Nov 30 of the 2013 Hurricane Season.

Humberto (2013)

	* ATLANTIC RII * GOES AVAILABLE, * AL09 AL	PARALLEL RUNS FOR J OHC AVAILABI 092013 09/10/13 1	HT/PG * .E * .8 UTC *
CUPP	ENIT MAY LITNID (MT)	. 60 TAT TON-	14 7 - 27 0
+++++++ SECTION 1,	2013 OPERATIONAL	RII WITH +++++++	14.7 -27.9
* 2013 ATLANTIC R	TPW, IRPC, CFLUX I INDEX AL092013	ENHANCEMENTS AL09 09/10/13	18 UTC **
(30 KT O	R MORE MAX WIND I	NCREASE IN NEXT 24	HR)
12 HR PERSISTENCE (550-200 MB SHEAR (K STD DEV OF IR BR TEM HEAT CONTENT (KJ/GM MAXIMUM WIND (kt) POT = MPI-VMAX (KT) 200 (10**7s-1) H AREA WITH TPW <45 BL DRY-AIR FLUX (w/	<pre>XT): 5.0 Range: T): 7.9 Range: MP: 15.4 Range: P: -0.6 Range: 2): 4.0 Range: : 60.0 Range: : 55.6 Range: : 70.8 Range: m2): 157.4 Range:</pre>	-49.5 to 33.0 Scal 28.8 to 2.9 Scal 37.5 to 2.9 Scal 2.4 to -3.1 Scal 0.0 to 155.1 Scal 22.5 to 121.0 Scal 22.5 to 121.0 Scal 28.4 to 139.1 Scal -23.1 to 181.5 Scal 100.0 to 0.0 Scal 960.3 to -67.2 Scal	ed/wgted Val: 0.1/ 1.9 ed/wgted Val: 0.8 1.1 ed/wgted Val: 0.6/ 0.8 ed/wgted Val: 0.5/ 0.8 ed/wgted Val: 0.7/ 0.9 ed/wgted Val: 0.7/ 0.9 ed/wgted Val: 0.7/ 0.9 ed/wgted Val: 0.2/ 0.2 ed/wgted Val: 0.2/ 0.2 ed/wgted Val: 0.5/ 0.3 ed/wgted Val: 0.8/ 0.0
Prob of RI for 25 k Prob of RI for 30 k	t RI threshold= t RI threshold=	27% is 2.2 time 16% is 2.2 time 15% is 3.2 time	es the sample mean(11.9%) es the sample mean(7.6%)
Prob of RI for 40 k	t RI threshold=	0% is 0.0 time	es the sample mean(3.0%)
++++++ SECTION 2,	RII WITH LIGHTNIN FOR GOES-R PROVIN	G DATA +++++++ G GROUND	
.09 Initial v	max, lat, lon:	60. 14.7 -27.9	Date/time: 13 0910 18
cobability Rapid In cobability Rapid In	tensification= tensification=	12% no lightning 14% with lightning	g, experimental algorithm
apid Intensificatio	n (RI) = +30 kt o	r more max wind cha	nge in 24 hr
redictor Name Limatology	Normalized Value	Prob Contribtuion 5.5 -2.8	1
50-200 hPa Shear	-0.8	1.5	
00 hPa Divergence	1.0	-0.1	
DES IR Cold Pixels	0.7	2.2	
DES IR asymmetry	-0.4	0.7	
cean Heat Content	-1.3	0.4	
SU-700 hPa RH	0.8	2.2	
ear Core Lightning	-0.9	2.7	
ter Lightning	-0.5	-1.3	
agent Lightning Don	aitu Biatoru (Ctr	ikaa/km2_uaam)	
te/Time vmax(kt)	Near Core (0-200	km) Outer Region	(200-400 km)
3 0910 18 60	0.0	1.8	(200 100 100)
3 0910 12 55	0.0	0.8	
3 0910 06 55	0.0	0.0	
3 0909 18 45	4.0	0.4	
3 0909 12 40	4.0	4.0	
3 0909 06 35	2.0	1.6	
3 0909 00 30	3.0	7.2	
ishted complement	. 15.1	8.3	
Note: Near core lig	htning < sample m	ean favors RI	
Outer lig	htning > sample m	ean favors RI	
	AND CONSENSUS FOR	JHT	
Prob RI for 20kt/ 1	2hr BI threshold=	8% is 1.4 time	es sample mean (5.8%)
Prob RI for 25kt/ 2	4hr RI threshold=	27% is 2.2 time	s sample mean (11.9%)
Prob RI for 30kt/ 2	4hr RI threshold=	16% is 2.2 time	es sample mean (7.6%)
Prob RI for 35kt/ 2	Ahr RI threshold=	15% 18 3.2 time	s sample mean (4.5%)
Prob RI for 45kt/ 3	6hr RI threshold=	0% is 0.0 time	s sample mean (5.1%)
Prob RI for 55kt/ 4	8hr RI threshold=	0% is 0.0 time	s sample mean (5.3%)
Matrix of RI probab	ilities		
RI (kt / h) 20/	12 25/24 30/2	4 35/24 40/24	45/36 55/48
SHIPS-RII: 8.	0% 26.6% 16.4	\$ 14.6% 0.0%	0.0% 0.0%
Logistic: 8.	3% 33.7% 18.9	8 7.38 0.08	8.5% 2.8%
Davogian. 7	79 22 09 0.2		

New multi-lead time ensemble-based RII

Ensemble RII Verification Methodology

- Multi-lead time independent versions of the RI models were derived for each year between 2004 and 2013 by first removing all cases from each individual year and then re-deriving the models using cases from the remaining 9 year sample.
- Ensemble RII re-run forecasts were then performed using the operational GFS forecast fields and operational NHC storm information archived for the period 2004-2013 using the independent models that were derived for the 10 year sample.
- All over-water tropical and subtropical forecast cases from 2004-2013 were verified using a Brier skill score (see Kaplan et al. 2010):

$$BS = 1/n \sum_{k=1}^{n} (y_k - o_k)^2$$

where y_k is the forecasted RI probability ($0.0 \le y_k \le 1.0$) from the RI model for each case

and

 $o_k = 0$ if no RI occurs and $o_k = 1$ if RI does occur

Ensemble RII Verification Methodology

- Multi-lead time independent versions of the RI models were obtained for each year between 2004 and 2013 by first removing all cases from each individual year and then re-deriving the models using cases from the remaining 9 year sample.
- Ensemble RII re-run forecasts were then performed using the operational GFS forecast fields and operational NHC storm information archived for the period 2004-2013 using the independent models that were derived for the 10 year sample.
- All over-water tropical and subtropical forecast cases from 2004-2013 were verified using a Brier Skill Score (see Kaplan et al. 2010) where:

$$BS = 1/n \sum_{k=1}^{n} (y_k - o_k)^2$$

where y_k is the forecasted RI probability ($0 \le y_k \le 1$) from the RI model for each case and

 $o_k = 0$ if no RI occurs and $o_k = 1$ if RI does occur

Brier Skill Score = (1. – *BSM/BSCLIM*)*100

where BSM and BSCLIM are the Brier Scores (BS in yellow box) of the RI model and climatological forecasts, respectively.

-∞<Skill<100

(so perfect skill is 100%)

Skill of the Atlantic Basin 2004-2013 Independent Re-run RI Model Forecasts

Reliability Diagram for 2004-2013 Atlantic Independent Re-run Ensemble RI Model Forecasts

Samples of Atlantic Basin Ensemble Re-Run RI Model Performance

Michael (2012)

Wilma (2005)

Skill of the E. Pacific basin 2004-2013 Independent RI model Re-run Forecasts

Reliability Diagram for 2004-2013 E. Pacific Independent Ensemble RI Model Re-run Forecasts

Samples of E. Pacific Basin Ensemble Re-Run RI Model Performance

Rick (2009)

Flossie (2007)

Deterministic RI Aid

- Background
 - Rapid intensity aid derived to provide deterministic RI intensity forecasts by combining IVCN model (e.g., HWRF,LGEM) and probabilistic 24-h SHIPS-RII forecasts (Sampson et al. 2011).
 - Revised versions of RI Aid have been developed to employ new multi-lead time ensemble RII guidance for Atlantic and E. Pacific basins.
- Methodology
 - RI aid assigns intensification rate when ensemble RI forecasted probability > 40% for a given RI threshold.
 - Assigned intensification rate added to existing IVCN model forecasts (HWRF,GFDL,SHIPS,LGEM) to obtain new deterministic RI aid intensity forecast (IVRI) at 12-48 h.
 - IVRI compared to IVCN and NHC Official (OFCL) forecasts for homogeneous independent 2008-2013 sample.

2008-2013 Independent Rapid Aid Verification

Atlantic basin

Summary

- Improved multi-lead time ensemble-based RI models for estimating probability of RI at 12-h,24-h, 36-h and 48-h lead times were developed and tested in Atlantic and E. Pacific basins in real-time during 2013 Hurricane season.
- Verification of 2004-2013 independent RI re-run forecasts showed that multi-lead time forecasts of individual RI models (SHIPS, Bayesian, Logistic regression) were generally skillful at each lead-time in both basins with ensemble-based version proving to be the most skillful overall.
- New versions of the deterministic rapid intensity aid (IVRI) that employ both probabilistic RI guidance and operational intensity model consensus (IVCN) were developed using ensemble-based multi-lead RI models for the Atlantic and E. Pacific basins.
- An evaluation of the new multi-lead time IVRI forecasts conducted for the independent 2008-2013 RI re-run sample demonstrated that, on average, the IVRI forecasts exhibited lower means absolute errors and smaller biases than did IVCN in both the Atlantic and E. Pacific basins.

Future Work

- Run new multi-lead time RI, microwave-based RI, and IVRI guidance in real-time during the upcoming 2014 Atlantic and E. Pacific Hurricane seasons (as desired).
- Work on combing experimental lighting and current operational versions of SHIPS-RI models.
- Explore potential for improving RI model forecasts by including NHCderived real-time tropical cyclone structural information.