
Verification of Tropical Cyclone Genesis Prediction in a Suite of Operational Global Numerical Weather

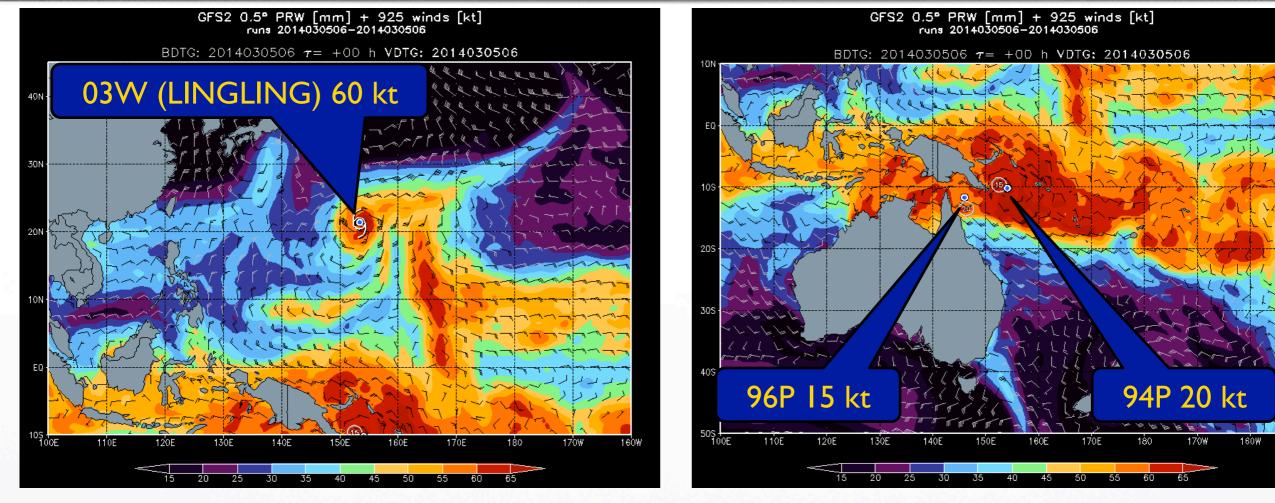
Prediction Models

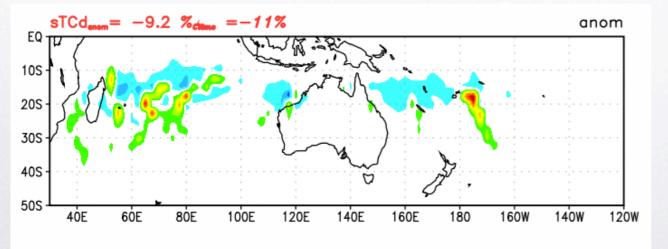
Mike Fiorino

michael.fiorino@noaa.gov Commander, United States Navy (retired) B.S. ('75 PSU), M.S. ('78 PSU), Ph.D. ('87 NPS) all in Meteorology

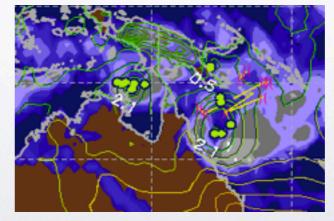
NOAA ESRL Boulder CO 5 March 2014

- R2O v O2R
 - JTWC/FNMOC: STY Abbey 1983 PhD dissertation on the nonlinear dynamics of beta gyres
 - NHC: potential of global models to forecast TC genesis
- TCgen2 and the TC menagerie
- HFIP 2013 demo v 2010 demo verification in LANT/EPAC/WPAC
- Prospects for accurate model TC genesis forecasts...are very good





slide |


METCON 2014030506 03W, 94P, 96P

slide 2

ECMWF HRES D+3

NCEP GFS D+3

...maybe those d!*#%ng models are pretty good after all... 01W.2014 (LINGLING) slide 3

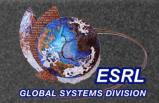
"The models are getting downright phenomenal in their skill and usefulness. Several days ago, the NVG and GFS began picking-up on 91W making it to the Philippines, and these two models have been (somewhat) consistent in track and timing ever since."

Mark Lander, UofGuam in an email to tstorm.org list on 2014010909

		TC: 01W.2014 [LINGLING] V _{mm} : 35kt
2014010818	A1W.2014 015 4.7 142.4E 303.1 11.9 B NT NW 1/38 1f: 0.00	X 010818 15 X 010900 15
2014010900	A1W.2014 015 4.8 141.5E 303.1 11.9 B NT NW 2/38 1f: 0.00	€ 010000 15 € 010912 15
2014010906	A1W.2014 015 6.0 140.4E 303.1 11.9 B NT NW 3/38 1f: 0.00	1 010018 15 X 010018
2014010912	A1W.2014 015 4.0 141.1E 206.5 4.5 B NT NW 4/38 1f: 0.00	X 01108 15 X 011012 15 V 101018 13
•		25N
•		
2014011706*	A1W.2014 020 1007 9.7 127.9E 230.0 2.0 C DB NW 35/38 lf: 0.00 INVEST <**Genes	
2014011712*	A1W.2014 020 1007 9.7 127.6E 255.0 2.0 C DB NW 36/38 lf: 0.00 INVEST <**Genes	is 20N - 20N
2014011718*	A1W.2014 020 1005 9.9 127.0E 280.0 4.0 C DB NW 37/38 lf: 0.00 INVEST <**Genes	
2014011800*	A1W.2014 030 1000 9.9 127.3E 304.1 1.8 B TD NW 38/38 lf: 0.00 <**Genes	
2014011806*	01W.2014 035 996 8.9 127.8E 156.3 4.9 B TS WN TJM 20/30 1f: 0.00 LINGI	
2014011812*	01W.2014 035 996 8.4 128.3E 138.1 7.4 B TS WN TJM 21/30 lf: 0.00 LINGLING <**Genes	
2014011918	01W.2014 025 1004 6.6 128.7E 140.4 3.9 B TD WN SJB 26/30 1f: 0.00 LINGLING	
2014012000	01W.2014 025 1008 6.3 129.0E 135.2 4.2 B TD NW 27/30 1f: 0.00 LINGLING	5N
2014012006	01W.2014 020 1004 6.3 129.2E 121.1 2.9 B TD NW 28/30 1f: 0.00 LINGLING	
2014012012	01W.2014 020 1004 6.3 129.5E 90.0 2.5 B TD NW 29/30 1f: 0.00 LINGLING	
2014012018	01W.2014 020 1007 6.3 129.7E 90.0 2.5 B TD NW 30/30 1f: 0.00	
2014 01W TS	LINGLING : 35 : 3.2; 7.2 : 8.9 127.9 : 010818<->012018 : 6.3<->11.9 :126.3<->129.7 : 0.8 : 0.1 : 0:	
+0.000	0.4. 0.144 1.5. 0.11000	100E 110E 120E 130E 140E 150E 160E 160E 10206 20 1 012012 20 1 012012 20
tG:222	9X: 91W 1st: 011800	▲ 012018 20

- 01W.2014 was 91W for 222 h before JTWC issued 1st warning
- similar to observations of the NHC specialists 2006-2008 that if the big three models (GFS/ECMWF/UKMO) forecast the formation of a cyclone, then...

main ingredients of TCgen2


http://ruc.noaa.gov/hfip/tcgen (password protected, .com excluded) slide 4

- TIM's (TCs In Models) cyclone tracker
 - tracker mode track cyclones from an initial position in the initial conditions (a priori)
 - genesis mode find and track cyclones during the integration (a posteriori)
 - measure of model cyclone strength scaled Tropical Depression days (sTDd)

Genesis definition

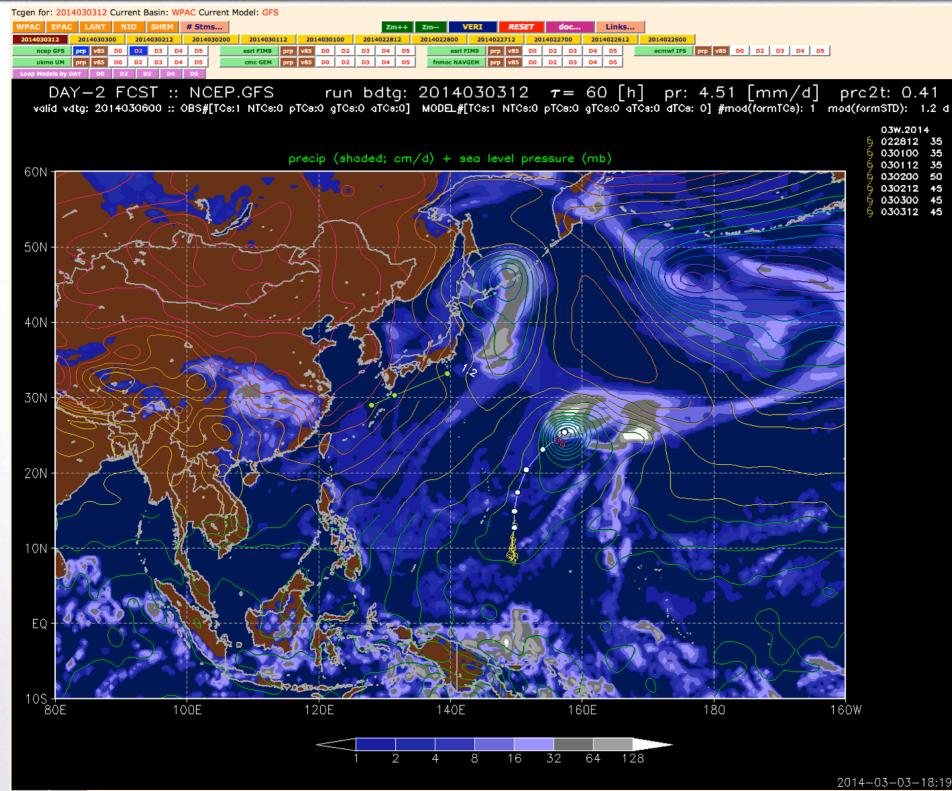
- 30-h period around the first advisory(NHC)/warning(JTWC) to give models running at 00/12 UTC three chances to forecast genesis
- TC demographics of ?TCs and spuricanes
- Scheme to match model cyclones (genesis & tracker) to real ?TCs
 - compare positions of ?TCs to model TCs within a 24-h window before the forecast time
 - a bit of an accounting nightmare...
- Weather maps + model diagnostics
 - sanity check the tracker and matching scheme ; synoptic evaluation
 - basin-wide, over-ocean precipitation + ratio of convective/total precip

pTCs, TCs, mTCs, aTCs and the **SPURICANE**

the TC menagerie

slide 5

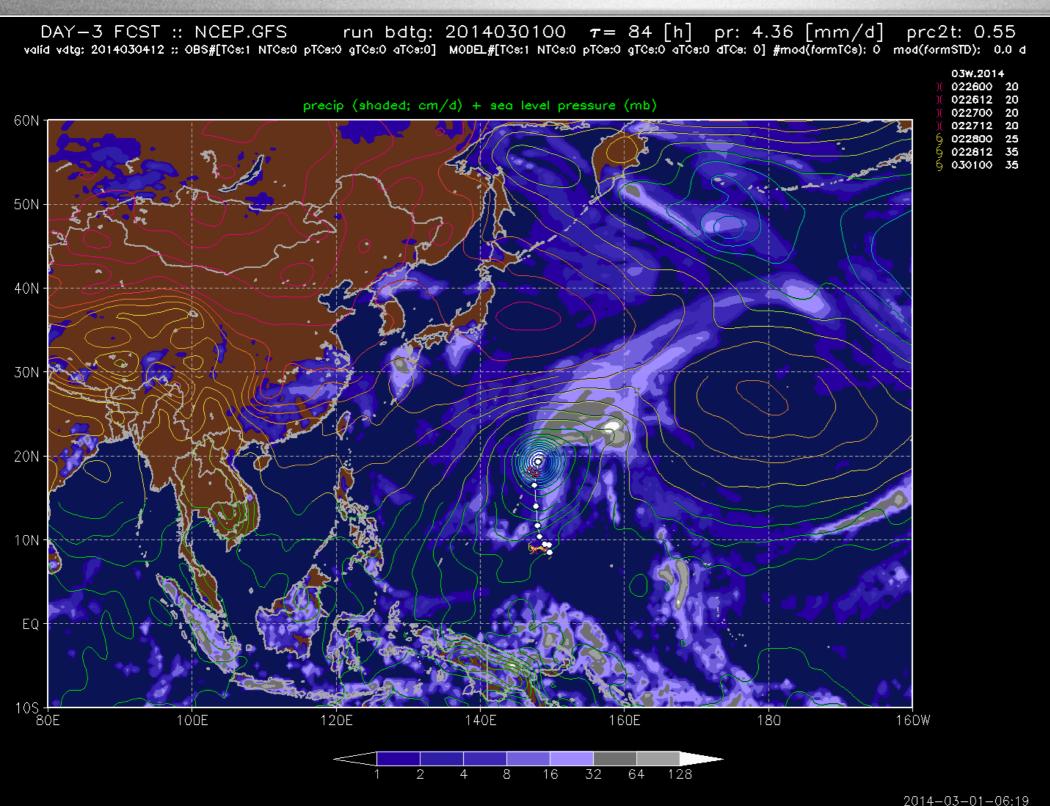
Туре	Naming	Features
TC	01-50 numbered TCs 01W.2014 TC #1 in WESTPAC in 2014	tropical cyclone as analyzed by JTWC/NHC ATCFTC designations: TD,TS,TY, HU, STY, [SD, SS] ATCF non-TC designations: PT, XT, ET
р ТС	9X or INVEST systems 94S.2014 – the landphoon over eastern OZ	pre/potential TC as analyzed by JTWC/NHC ATCF designations: LO, DB, WV
mTC	TGNNNN NN or 9X	model cyclone from a tracker
aTC	TGNNNN	initial mTC that the model maintains for >= 24 h
SPURICANE	TGNNNN	 mTC that <u>cannot be associated</u> with a TC, pTC, aTC mTC <u>associated</u> with a <u>dissipated</u>?TC



TCgen2 – front page – FCST mode – forecast

http://ruc.noaa.gov/hfip/tcgen

slide 6


- 7 models
 - GFS (27 kmL64)
 - FIM8 (30kmL64), FIM9 (15kmL64)
 - ECMWF HRES (16 kmL137)
 - UKMO (30 kmL70)
 - NAVGEML42 (37 kmL52)
 - CMC-GDPS (33 kmL79)
- +12 h model forecast for consistency with forecast
 e.g,day+2 (D2) uses 60 h model forecast
- tropical ocean-only precip stats for model diagnostics...
- model and observed ? TCs
- FCST (forecast) & VERI (verification) modes
- single model or loop mode

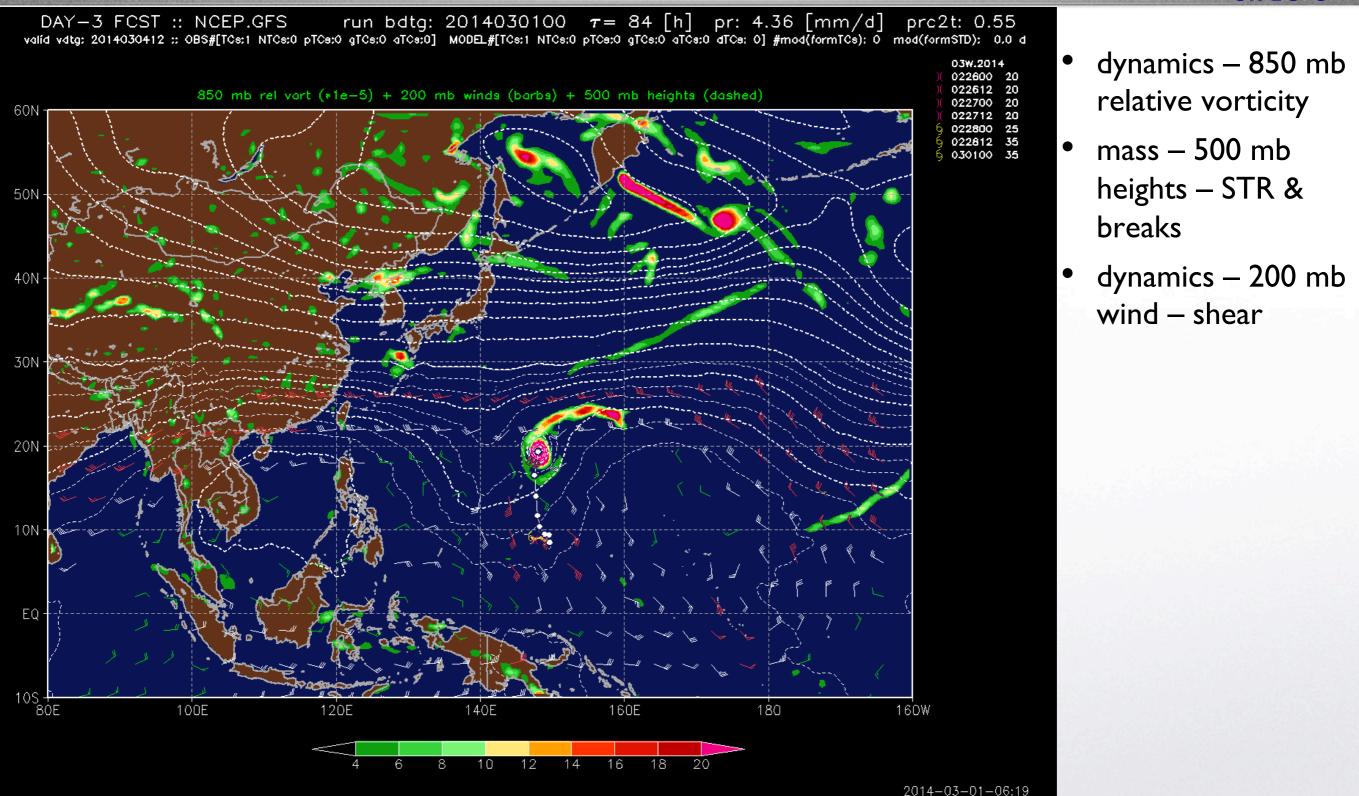
TCgen2 – two WxMAP2 product: thermo (precip)

http://ruc.noaa.gov/hfip/tcgen

 thermo (precip) and mass (sea-level pressure)

slide 7

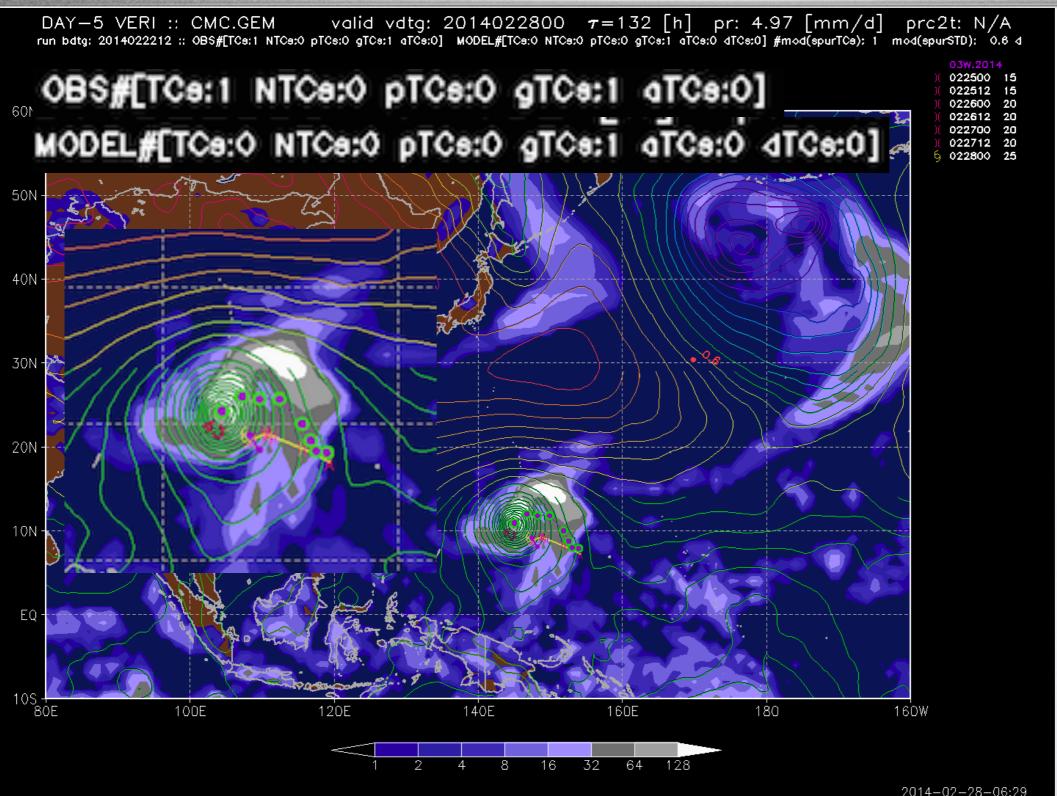
 D3 forecast (tau 84) for 03W verifying today (030412)



TCgen2 – two WxMAP2 products: dynamical (NHC 850 McAdie chart)

http://ruc.noaa.gov/hfip/tcgen

slide 8



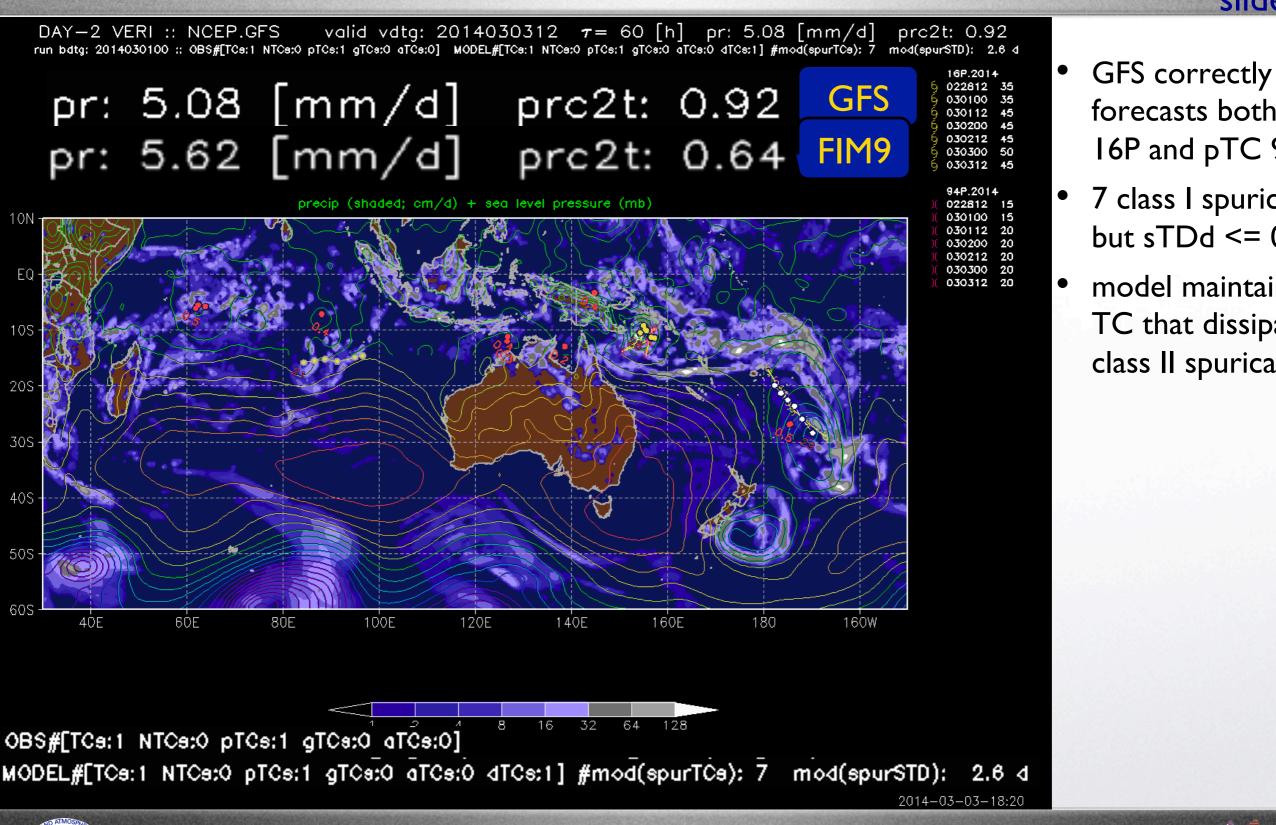
TCgen2 – VERI mode – verification – CMC CGDP D+5 03W

http://ruc.noaa.gov/hfip/tcgen

TC genesis in a suite of global models

Mike Fiorino ESRL - IHC 68 20140305

 first JTWC warning for 03W on 2014022800 – genesis


slide 9

- CMC mTC located 'near enough' to 03W to be declared a 'hit' of genesis forecast Vmax=43 kt
- spuricane on top of tropical band

TCgen2 – VERI mode – spuricanes class I & 2 – NCEP GFS D+2 forecast

http://ruc.noaa.gov/hfip/tcgen

slide 10

forecasts both TC

I6P and pTC 96P

7 class I spuricanes

but sTDd ≤ 0.5 d

model maintained a

TC that dissipated –

class II spuricane

TCgen2 – seasonal verification – LANT 2013 – D+2 & D+5

http://ruc.noaa.gov/hfip/tcgen

TCgen Stats :: Gentau: 60 [h] Basin: I ESRL.FIM9, UKMO.UM	box color	key									
Storm	CMC.GEM	ECMWF.IFS	ESRL.FIM	NCEP.GFS	FNMOC.NAVGEM	ESRL.FIM9	UKMO.UM				
01L.2013 [TS 055 kt] ANDREA	3/ 3.1	3/ 2.0	2/ 1.1	2/ 1.7	0/	2/ 1.5	2/ 1.9	86		no model run	
02L.2013 [TS 040 kt] BARRY	0/	0/	1/ 0.4	0/	0/	1/ 0.5	0/	29	-1/		
03L.2013 [TS 055 kt] CHANTAL	0/	0/	0/	0/	0/	0/	0/				
04L.20 SIAN	3/ 1.4	1/ 0.9	1/ 0.5	2/ 1.0	2/ 0.6	1/ 0.5	1/ 0.3	100	0/	0 forecasts of	
05L.20	1/ 0.3	1/ 0.3	1/ 0.5	1/ 0.5	1/ 0.4	0/	1/ 0.3	86	0/	genesis	
06L.20 JAND	0/	0/	0/	0/	1/ 0.9	0/	0/	14		genesis	
07L.20 RIELLE	3/ 2.6	3/ 1.5	3/ 2.0	3/ 2.3	3/ 1.8	2/ 1.6	3/ 2.0	100	1/05	I of 3 forecast	
08L.2015 [10 050 kt] L13HT	0/	2/ 0.6	0/	3/ 1.7	0/	0/	0/	29	1/ 0.5	verified	
09L.2013 [HU1 075 kt] HUMBERTO	2/ 0.6	3/ 1.3	2/ 1.3	2/ 1.3	0/	2/ 1.0	2/ 1.2	86		Vermed	
10L.2013 [HU1 075 kt] INGRID	1/ 0.5	3/ 0.9	2/ 1.1	2/ 0.6	2/ 1.0	3/ 1.6	1/ 0.4	100	2/ 1.5	2/3 forecasts	
11L.2013 [TS 045 kt] JERRY	0/	0/	1/ 0.5	0/	0/	1/ 0.6	0/	29			
12L.2013 [TS 055 kt] KAREN	0/	1/ 0.3	1/ 1.0	1/ 0.7	3/ 1.8	-1/	2/ 0.8	83		verified	
13L.2013 [TS 045 kt] LORENZO	0/	1/ 0.3	0/	0/	1/ 0.7	0/	0/	29	3/ 3.6	3/3 forecasts	
14L.2013 [TS 055 kt] MELISSA	3/ 4.0	2/ 2.4	2/ 2.6	2/ 2.6	2/ 2.4	2/ 2.6	2/ 2.2	100	0, 0.0		
bottomline by model	50	71	71	64	57	62	57			verified	
										0%	
TCgen Stats :: Gentau: 132 [h] Basin:	LANT Year	r: 2013 Mod	lels: CMC.0	SEM. ECMV	VE.IES. ESRL.FIM	NCEP.GES	ENMOC.N	AVGEM.		0/0	
ESRL.FIM9, UKMO.UM				,			,		14	< 2F 9/	
Storm	CMC.GEM	ECMWF.IFS	ESRL.FIM	NCEP.GFS	FNMOC.NAVGEM	ESRL.FIM9	UKMO.UM		14	< 25 %	
01L.2013 [TS 055 kt] ANDREA	3/ 3.0	3/ 1.6	1/ 0.3	3/ 2.2	1/ 0.2	1/ 0.7	0/	86			
02L.20 RY	2/ 0.6	2/ 0.8	3/ 0.9	1/ 0.4	0/	3/ 1.0	1/ 0.7	86	29	25 >= % < 75	
03L.20 NTAL	0/	0/	0/	0/	0/	0/	0/				
04L.20	2/ 0.8	0/	0/	1/ 0.4	0/	0/	0/	29	83	>= 75	
05L.20	0/	0/	0/	3/ 1.2	0/	1/ 0.5	0/	29			
06L.201- L. Constant NAND	0/	1/ 0.4		1/ 0.4	0/	0/	0/	29			
07L.2013 [TS 050 kt] GABRIELLE	3/ 3.7	2/ 0.7	1/ 0.5	2/ 1.5	2/ 1.1	0/	3/ 2.0	86			
08L.2013 [TD 030 kt] EIGHT	0/	0/	0/	2/0.7	1/0.5	0/	0/	29			
09L.2013 [HU1 075 kt] HUMBERTO	3/ 1.9	3/ 1.3	0/	2/1.6	1/ 0.2	2/ 1.5	3/ 1.5	86 29			
10L.2013 [HU1 075 kt] INGRID 11L.2013 [TS 045 kt] JERRY	0/ 2/ 2.4	1/ 0.3	0/	3/ 1.5 0/	3/ 1.7	0/	0/	29			
12L.2013 [TS 055 kt] KAREN	2/ 2.4	1/ 0.2	2/ 2.3	2/ 1.5	0/	-1/	1/ 0.5	83			
		1/ 0.2	27 2.0	2/ 1.5	•		1/ 0.5		Frank in the week water		

13L.2013 [TS 045 kt] LORENZO

14L.2013 [TS 055 kt] MELISSA

bottomline by model

3/ 3.0

3/ 3.6

64

2/ 1.7

57

TC genesis in a suite of global models Mike Fiorino ESRL – IHC 68 20140305

2/ 2.0

43

2/ 1.7

38

2/ 2.0

79

2/ 2.5

36

14

100

2/ 1.9

36

slide ||

TCgen2 – seasonal verification – WPAC 2013 – D+2 & D+5

http://ruc.noaa.gov/hfip/tcgen

slide 12

TCgen Stats :: Gentau: 60 [h] Basin: ESRL.FIM9, UKMO.UM	VGEM,	n Stats :: Gentau: 132 [h] Basin .FIM9, UKMO.UM	: WPAC Ye	ear: 2013 Mo	dels: CMC.	GEM, ECM	WF.IFS, ESRL.FI	IM, NCEP.GFS	, FNMOC.N	IAVGEM,	box color	key							
Storm 01W.2013 [TS 045 kt] SONAMU	CMC.GEM -1/	ECMWF.IF5 -1/	S ESRL.FIM -1/	NCEP.GFS -1/	FNMOC.NAVGEN -1/		икмо.им -1/		Storm 2013 [TS 045 kt] SONAMU	CMC.GEM -1/	ECMWF.IFS	ESRL.FIM		FNMOC.NAVGE -1/	M ESRL.FIM9	UKMO.UM -1/			no model run
02W.2013 [TD 025 kt] SHANSHAN	-1/	-1/	-1/ 3/ 2.5	-1/ 3/ 2.6	-1/	-1/ 3/ 2.6	-1/ 2/ 1.0		2013 [TD 025 kt] SHANSHAN	-1/	-1/	-1/	-1/	-1/	-1/	-1/		-1/	
03W.2013 [TS 055 kt] YAGI 04W.2013 [TS 035 kt] LEEPI	3/ 3.6 3/ 3.1	3/ 1.8	3/ 2.5	3/ 2.5	1/ 0.3 3/ 1.6	3/ 2.5	3/ 2.4	86 100	2013 [TS 055 kt] YAGI 2013 [TS 035 kt] LEEPI	3/ 3.9 1/ 1.4	1/ 0.2	2/ 1.5 3/ 3.0	3/ 3.5 1/ 0.5	3/ 2.1 3/ 2.1	2/ 1.4 3/ 1.9	0/	71 86	0/	0 forecasts of
05W.2013 [TS 035 kt] BEBINCA	2/ 1.7	1/ 0.9	3/ 3.1	3/ 2.0	3/ 1.4	3/ 3.1	2/ 1.3	100	2013 [TS 035 kt] BEBINCA	1/ 0.5	1/ 0.5	0/	3/ 2.7	3/ 2.6	1/ 0.5	1/ 1.1	86	0/	genesis
06W.2013 [HU1 065 kt] RUMBIA	3/ 1.8	3/ 1.7	3/ 1.8	3/ 1.3	3/ 1.8	2/ 1.1	3/ 0.9	100	2013 [HU1 065 kt] RUMBIA	2/ 1.1	3/ 1.3	1/ 0.5	3/ 1.7	3/ 1.4	2/ 1.0	3/ 1.7	100		U U
07W.2013 [HU4 125 kt] SOULIK 08W.2013 [TS 040 kt] CIMARON	3/ 3.7 3/ 3.0	3/ 1.4 3/ 2.8	1/ 0.4 3/ 3.8	1/ 0.4 3/ 3.9	0/ 3/ 3.1	1/ 0.5 3/ 2.1	2/ 1.2 3/ 2.8	86 100	2013 [HU4 125 kt] SOULIK 2013 [TS 040 kt] CIMARON	3/3.3	0/ 3/ 6.1	0/	0/ 3/ 8.0	3/ 2.2 3/ 5.9	0/	1/ 0.3 3/ 4.2	43 100	1/ 0.5	l of 3 forecast
09W.2013 [TS 060 kt] JEBI	3/ 1.6	3/ 1.5	2/ 2.1	3/ 2.6	3/ 3.1	3/ 2.0	3/ 1.5	100	2013 [TS 060 kt] JEBI	3/ 5.8 3/ 4.0	1/ 0.3	3/ 7.8 1/ 0.9	2/ 0.8	0/	2/ 1.4	2/ 0.7	86		verified
10W.2013 [TS 040 kt] MANGKHUT	3/ 2.9	3/ 2.6	3/ 2.9	3/ 2.6	3/ 2.9	2/ 1.4	3/ 2.0	100	2013 [TS 040 kt] MANGKHUT	2/ 3.1	2/ 2.0	3/ 3.4	3/ 3.2	2/ 1.5	2/ 2.5	3/ 2.7	100	2/ 1.5	2/3 forecasts
11W.2013 [HU4 130 kt] UTOR	1/ 0.2	2/ 0.6	1/ 0.3	2/ 0.7	1/ 0.4	-1/	2/ 0.7	100	2013 [HU4 130 kt] UTOR	3/ 1.6	3/ 1.1	1/ 0.9	0/	3/ 1.9	-1/	3/ 1.2	83		verified
12W.2013 [HU1 075 kt] TRAMI	3/ 2.5	3/ 1.5	3/ 2.2	3/ 1.9	3/ 1.8	2/ 1.6	3/ 0.8	100	2013 (HU1 075 kt) TRAMI	3/ 4.0	1/ 0.5	3/ 3.6		2/ 0.9	1/ 0.7	1/ 0.4	100		vermed
13W.2013 [TD 025 kt] THIRTEEN	3/ 2.5	3/ 1.5	3/ 2.2	3/ 1.9	3/ 1.8	2/ 1.6	3/ 0.8	100	2013 [TD 025 kt] THIRTEEN	3/ 4.0	1/ 0.5	3/ 3.6	3/ 3.9	2/ 0.9	1/ 0.7	1/ 0.4	100	3/ 3.6	3/3 forecasts
14W.2013 [TS 055 kt] KONG-REY	3/ 3.5 3/ 2.3	2/ 1.6 3/ 2.6	3/ 3.7 3/ 3.0	3/ 3.5 3/ 3.7	3/ 2.0 3/ 1.5	2/ 2.5 3/ 1.9	2/ 1.8 3/ 2.5	100	2013 [TS 055 kt] KONG-REY	3/ 2.8	2/ 0.4 3/ 3.2	0/ 2/ 1.4	0/ 3/ 2.5	3/ 1.0	0/ 3/ 2.2	2/ 1.5 3/ 1.9	57 100		verified
15W.2013 [TS 050 kt] TORAJI 16W.2013 [TS 060 kt] MAN-YI	3/ 4.2	3/ 2.2	3/ 3.0	3/ 3.5	3/ 2.3	2/ 2.8	3/ 2.5	100 100	2013 [TS 050 kt] TORAJI 2013 [TS 060 kt] MAN-YI	3/ 4.5 3/ 2.8	1/ 0.2	2/ 1.4	3/ 2.5	3/ 2.4 3/ 1.9	2/ 1.3	1/ 0.3	100		
17W.2013 [HU5 140 kt] USAGI	3/ 3.7	3/ 1.8	3/ 3.0	3/ 2.7	3/ 1.5	3/ 3.0	2/ 0.8	100	2013 [HU5 140 kt] USAGI	2/ 1.2	0/		2/ 3.5	3/ 2.5	0/	2/ 2.0	71		0%
18W.2013 [TD 025 kt] EIGHTEEN	3/ 3.1	3/ 2.3	3/ 2.6	3/ 2.0	3/ 2.2	3/ 2.7	3/ 2.4	100	2013 [TD 025 kt] EIGHTEEN	3/ 3.0	3/ 1.9	3/ 2.9	3/ 1.5	2/ 1.0	3/ 2.9	3/ 1.8	100		
19W.2013 [HU2 090 kt] PABUK	2/ 3.2	3/ 3.1	2/ 3.4	2/ 3.0	1/ 1.3	2/ 4.0	2/ 2.4	100	2013 [HU2 090 kt] PABUK	3/ 4.0	3/ 2.4	2/ 2.4	3/ 2.2	2/ 1.5	1/ 1.2	2/ 1.4	100	14	< 25 %
20W.2013 [HU2 090 kt] WUTIP	3/ 2.7	3/ 2.3	3/ 2.5	3/ 2.3	3/ 2.2	2/ 2.0	3/ 2.2	100	2013 [HU2 090 kt] WUTIP	3/ 4.0	3/ 3.8		3/ 3.1	3/ 4.7	0/	3/ 3.1	86		
21W.2013 [TS 035 kt] SEPAT	3/ 3.4	3/ 2.7	3/ 3.3	3/ 2.9	3/ 2.7	2/ 2.3	3/ 2.7	100	2013 [TS 035 kt] SEPAT	3/ 4.3	3/ 1.6	3/ 3.7	3/ 2.1	3/ 2.5	2/ 2.6	2/ 1.3	100	29	25 >= % < 75
22W.2013 [HU2 090 kt] FITOW 23W.2013 [HU4 125 kt] DANAS	3/ 3.4 2/ 1.6	3/ 2.7 2/ 1.3	3/ 3.3 3/ 2.3	3/ 2.9 3/ 2.0	3/ 2.7 3/ 1.6	2/ 2.3 1/ 0.8	3/ 2.7 3/ 1.4	100 100	2013 (HU2 090 kt) FITOW 2013 (HU4 125 kt) DANAS	3/ 4.3 2/ 2.8	3/ 1.6	3/ 3.7 2/ 1.2	3/ 2.1 3/ 2.8	3/ 2.5 3/ 1.4	2/ 2.6 1/ 0.6	2/ 1.3 2/ 0.9	100 100	00	
24W.2013 [HU3 105 kt] NARI	0/	1/ 1.4	1/ 1.3	1/ 1.3	1/ 0.9	0/	1/ 1.1	71	2013 (HU3 105 kt) NARI	3/ 4.3	· ·	3/ 5.3	-	1/ 1.5	1/ 0.4	3/ 4.1	100	83	>= 75
25W.2013 [HU4 115 kt] WIPHA	2/ 1.1	3/ 2.1	3/ 3.2		3/ 2.3	2/ 2.0	3/ 2.4	100	2013 [HU4 115 kt] WIPHA	3/ 4.4		0/	2/ 2.3	2/ 1.8	2/ 3.2	3/ 1.8	86		
26W.2013 [HU5 140 kt] FRANCISCO	2/ 1.5	2/ 1.4	1/ 0.3	1/ 0.6	3/ 0.8	0/	1/ 0.6	86	2013 [HU5 140 kt] FRANCISCO	0/	0/	0/	0/	1/ 0.5	0/	0/	14		
27W.2013 [TD 025 kt] TWENTYSEVE	2/ 1.8	1/ 0.7	2/ 2.0	3/ 2.6	1/ 0.7	1/ 0.9	0/	86	2013 [TD 025 kt] TWENTYSEVE	2/ 2.6	0/	1/ 1.0	1/ 1.0	0/	2/ 1.6		57		
28W.2013 [HU5 140 kt] LEKIMA	3/ 1.8	3/ 2.3			2/ 1.6	2/ 1.8	3/ 2.2	100	2013 (HU5 140 kt) LEKIMA	2/ 1.8				3/ 2.4	2/ 1.9	2/ 1.5	100		
29W.2013 [HU3 100 kt] KROSA	3/ 2.8	3/ 2.4	3/ 3.2		3/ 2.2	0/	3/ 1.9	86	2013 [HU3 100 kt] KROSA	1/ 1.8		3/ 7.2		3/ 7.0	0/	1/ 0.3	86		
30W.2013 [TS 035 kt] THIRTY	3/ 2.4	3/ 2.1	3/ 2.4	3/ 2.4	1/ 0.7	1/ 0.8	3/ 2.1		2013 [TS 035 kt] THIRTY	1/ 1.3			3/ 1.7	2/ 0.5	1/ 0.9	3/ 1.9	100		
31W.2013 [HU5 170 kt] HAIYAN	2/ 1.6		3/ 2.0		1/ 0.7	1/ 0.8	3/ 2.1	100	2013 [HU5 170 kt] HAIYAN	1/ 1.3			3/ 1.7	2/ 0.5	1/ 0.9	3/ 1.9	100		
32W.2013 [TD 025 kt] PODUL	3/ 3.5	2/ 1.8	2/ 2.2		2/ 2.3	1/ 1.2	2/ 1.9		2013 [TD 025 kt] PODUL	3/ 3.6	2/ 1.1		2/ 3.0	2/ 2.3	1/ 1.6	2/ 1.9			
33W.2013 [TD 030 kt] THIRTYTHRE	1/ 0.4	0/	0/	1/ 0.4	1/ 0.8	1/ 0.4	0/	57	2013 [TD 030 kt] THIRTYTHRE	3/ 3.0	0/	2/ 1.8	0/	3/ 3.5	1/ 0.9	2/ 1.5	71		
bottomline by model	97	94	97	100	97	90	94		bottomline by model	97	81	84	84	94	80	87			


TCgen2 – seasonal verification – LANT 2010 v WPAC 2013 D+5

http://ruc.noaa.gov/hfip/tcgen

slide 13

TCgen Stats :: Gentau: 120 [h] Basin: Storm	Igen Stats :: Gentau: 132 [h] Basin: WPAC Year: 2013 Models: CMC.GEM, ECMWF.IFS, ESRL.FIM, NCEP.GFS, FNMOC.NAVGEM, RL.FIM9, UKMO.UM									box color	key							
01L.2010 [HU2 085 kt] ALEX 02L.2010 [TD 030 kt] TWO 03L.2010 [TS 035 kt] BONNIE	CMC 2/ 2.9 2/ 1.6 0/	ECM 3/ 3.7 1/ 0.2 0/	FIM 1/ 2.2 0/ 0/	GFS 0/ 0/	NGP 3/ 9.9 0/ 0/	UKM 0/ 0/	67 33	Storm [W.2013 [TS 045 kt] SONAMU ?W.2013 [TD 025 kt] SHANSHAN	-1/ -1/	-1/ -1/	-1/ -1/	-1/ -1/	FNMOC.NAVGE	-1/ -1/	UKMO.UM -1/ -1/		-1/	no model run
04L.2010 [TS 050 kt] COLIN 05L.2010 [TD 030 kt] FIVE 06L.2010 [HU4 115 kt] DANIELLE	3/ 7.3 2/ 7.6 3/ 2.7	1/ 1.5 0/ 4/ 6.7	1/ 1.1 2/ 1.9 1/ 3.0	1/ 0.5 3/ 7.8 1/ 0.8	1/ 2.3 2/ 3.7 3/ 2.1	2/ 4.0 0/ 2/ 1.6	100 67 100	3W.2013 [TS 055 kt] YAGI 4W.2013 [TS 035 kt] LEEPI 5W.2013 [TS 035 kt] BEBINCA 5W.2013 [HU1 065 kt] RUMBIA	3/ 3.9 1/ 1.4 1/ 0.5 2/ 1.1	0/ 1/ 0.2 1/ 0.5 3/ 1.3	2/ 1.5 3/ 3.0 0/ 1/ 0.5	1/ 0.5 3/ 2.7	3/ 2.1 3/ 2.1 3/ 2.6 3/ 1.4	2/ 1.4 3/ 1.9 1/ 0.5 2/ 1.0	0/ 0/ 1/ 1.1 3/ 1.7	71 86 86 100	0/	0 forecasts of genesis
07L.2010 [HU4 120 kt] EARL 08L.2010 [TS 055 kt] FIONA 09L.2010 [TS 035 kt] GASTON	1/ 0.3 1/ 0.8 2/ 2.8	1/ 0.9 3/ 4.2 2/ 1.2	0/ 0/ 4/ 3.2	1/ 0.3 2/ 2.4 2/ 1.5	1/ 0.2 3/ 3.3 2/ 0.9	0/ 1/ 0.6 4/ 2.0	67 83 100	7W.2013 [HU4 125 kt] SOULIK 3W.2013 [TS 040 kt] CIMARON 3W.2013 [TS 060 kt] JEBI	3/ 3.3 3/ 5.8 3/ 4.0	0/ 3/ 6.1 1/ 0.3	0/ 3/ 7.8	0/	3/ 2.2 3/ 5.9 0/	0/	1/ 0.3 3/ 4.2 2/ 0.7	43 100 86	1/ 0.5	I of 3 forecast verified
10L.2010 [TS 055 kt] HERMINE 11L.2010 [HU4 135 kt] IGOR 12L.2010 [HU4 115 kt] JULIA	1/ 1.1 1/ 0.4 0/	0/ 3/ 3.8	1/ 2.6 3/ 5.8	1/ 0.6 3/ 4.0	0/ 1/ 0.4 0/	0/ 2/ 0.9 0/	17 100	JW.2013 [TS 040 kt] MANGKHUT JW.2013 [HU4 130 kt] UTOR JW.2013 [HU1 075 kt] TRAMI	2/ 3.1 3/ 1.6 3/ 4.0	2/ 2.0 3/ 1.1 1/ 0.5		3/ 3.2 0/	2/ 1.5 3/ 1.9 2/ 0.9	2/ 2.5	3/ 2.7 3/ 1.2 1/ 0.4	100 83 100	2/ 1.5	2/3 forecasts verified
13L.2010 [HU3 105 kt] KARL 14L.2010 [HU1 070 kt] LISA	3/ 2.6 2/ 2.9	3/ 9.0 1/ 4.1	3/ 4.2 2/ 6.2	3/ 3.1 2/ 3.8	3/ 3.1 0/	3/ 5.6 1/ 2.4	100 83 100	3W.2013 [TD 025 kt] THIRTEEN 4W.2013 [TS 055 kt] KONG-REY 5W.2013 [TS 050 kt] TORAJI	3/ 4.0 3/ 2.8 3/ 4.5	1/ 0.5 2/ 0.4 3/ 3.2	3/ 3.6 0/ 2/ 1.4	3/ 3.9 0/	2/ 0.9 3/ 1.0 3/ 2.4	1/ 0.7	1/ 0.4 2/ 1.5 3/ 1.9	100 57 100	3/ 3.6	3/3 forecasts verified
15L.2010 [TS 050 kt] MATTHEW 16L.2010 [TS 035 kt] NICOLE 17L.2010 [HU1 075 kt] OTTO	4/ 6.5 1/ 0.8 3/ 7.0	5/ 9.3 1/ 0.6 3/ 8.0	5/27.4 1/ 2.8 3/10.5	5/10.1 1/ 1.4 3/ 4.5	5/12.0 1/ 0.2 3/ 6.9	5/12.9 0/ 2/ 7.6	 100	5W.2013 [TS 060 kt] MAN-YI 7W.2013 [HU5 140 kt] USAGI 3W.2013 [TD 025 kt] EIGHTEEN	3/ 2.8 2/ 1.2 3/ 3.0	1/ 0.2 0/ 3/ 1.9	2/ 2.0 2/ 3.6 3/ 2.9		3/ 1.9 3/ 2.5 2/ 1.0	2/ 1.3 0/ 3/ 2.9	1/ 0.3 2/ 2.0 3/ 1.8	100 71 100		0%
18L.2010 [HU2 090 kt] PAULA 19L.2010 [HU1 080 kt] RICHARD	1/ 2.5 3/11.6	1/ 0.6 3/ 0.8	1/ 3.3 3/15.9	1/ 1.3 3/ 6.8	1/ 2.1 2/ 3.7	1/ 2.8 3/ 4.0	100	9W.2013 [HU2 090 kt] PABUK JW.2013 [HU2 090 kt] WUTIP	3/ 4.0 3/ 4.0	3/ 2.4 3/ 3.8	2/ 2.4 1/ 1.2	3/ 2.2 3/ 3.1	2/ 1.5 3/ 4.7	1/ 1.2 0/	2/ 1.4 3/ 3.1	100 86	14	< 25 %
20L.2010 [HU1 065 kt] SHARY 21L.2010 [HU2 085 kt] TOMAS bottomline by model	4/15.8 0/ 75	2/ 8.0 2/ 4.4 75	2/13.2 2/ 6.4 70	2/ 9.2 2/ 1.2 70	2/ 4.8 2/ 2.0 70	1/ 0.4 0/ 55	100 67	IW.2013 [TS 035 kt] SEPAT 2W.2013 [HU2 090 kt] FITOW 3W.2013 [HU4 125 kt] DANAS	3/ 4.3 3/ 4.3 2/ 2.8	3/ 1.6 3/ 1.6 2/ 1.7	3/ 3.7 3/ 3.7 2/ 1.2	3/ 2.1 3/ 2.1 3/ 2.8	3/ 2.5 3/ 2.5 3/ 1.4	2/ 2.6 2/ 2.6 1/ 0.6	2/ 1.3 2/ 1.3 2/ 0.9	100 100 100	29 83	25 >= % < 75 >= 75
								IW.2013 [HU3 105 kt] NARI 25W.2013 [HU4 115 kt] WIPHA 26W.2013 [HU5 140 kt] FRANCISCO	3/ 4.3 3/ 4.4 0/	2/ 2.4 3/ 1.6 0/	3/ 5.3 0/ 0/	3/ 4.2 2/ 2.3 0/	1/ 1.5 2/ 1.8 1/ 0.5	1/ 0.4 2/ 3.2 0/	3/ 4.1 3/ 1.8 0/	100 86 14		- 13
								27W.2013 [TD 025 kt] TWENTYSEVE 28W.2013 [HU5 140 kt] LEKIMA 29W.2013 [HU3 100 kt] KROSA	2/ 2.6 2/ 1.8 1/ 1.8		1/ 1.0 3/ 2.5 3/ 7.2	3/ 1.9	0/ 3/ 2.4 3/ 7.0		0/ 2/ 1.5 1/ 0.3	57 100 86		
								30W.2013 [TS 035 kt] THIRTY 31W.2013 [HU5 170 kt] HAIYAN 32W.2013 [TD 025 kt] PODUL	1/ 1.3 1/ 1.3 3/ 3.6		2/ 1.4	3/ 1.7 3/ 1.7	2/ 0.5 2/ 0.5 2/ 2.3	1/ 0.9 1/ 0.9	3/ 1.9 3/ 1.9 2/ 1.9	100 100 100		
								33W.2013 [TD 030 kt] THIRTYTHRE bottomline by model	3/ 3.0 97	0/ 81	2/ 1.8 84	0/ 84	3/ 3.5 94	1/ 0.9 80		71		

Takeaways

- TCgen2 was developed based on NHC operations (O2R)
- FCST mode consistent with NHC operations, e.g., use 60 h model solution for D+2 forecast
- VERI mode to see how the models are doing in real time, based on a detailed comparison of model v observed (NHC/JTWC-analyzed) TCs
- in WPAC/EPAC 2013 models had 100% correct genesis forecasts at D+2 reduces to ~80% at D+5
- LANT 2013 genesis forecasts much less skillful, perhaps because the season had the lowest hurricane ACE in the last 48 years...
- comparison of active-basin genesis at D+5 between 2010 (TCgen1) and 2013 shows some improvement in model skill

slide 14