

ERDC's Coastal Storm (CSTORM) Modeling System

Chris Massey, PhD

Research Mathematician USACE-ERDC Coastal & Hydraulics Lab Chris.Massey@usace.army.mil

ERDC's Coastal Storm-Modeling System

Application of high-resolution, highly skilled numerical models in a tightly integrated modeling system with user friendly interfaces

Provides for a robust, standardized approach to establishing the risk of coastal communities to future occurrences of storm events.

Not just

BUILDING STRONG®

Innovative solutions for a safer, better world

ERDC

CSTORM-MS Technology Applications

Loose Model Coupling (Prior to 2009)

- Interagency Performance Evaluation Task Force (IPET)
- Louisiana Coastal Protection and Restoration (LaCPR MVN)
- Mississippi Coastal Improvement Program (MsCIP SAM)
- Flood mapping for Texas, Louisiana, Mississippi, North Carolina, Chesapeake Bay (FEMA)
- Morganza to the Gulf Hurricane Protection Project (MVN)
- Inner Harbor Navigation Canal (IHNC) closure (MVN)
- Plaquemines Parish flood protection planning (Plaquemines Parish)
- Guidance for new "PMH" coastal surge estimates for licensing (Nuclear Regulatory Commission)
- Waves inside Harbor Mouths (POA)
- New Orleans Litigation (Department of Justice)
- New wave model evaluation technique (NOAA)

Tight Model Coupling (Alpha Version)

- Finished in the Fall of 2009
- ERDC users for Corps projects (MsCIP and LaRose)

Tight Model Coupling (CSTORM-MS)

- Finished in June of 2010
- ERDC users for Nuclear Regulatory Commission project 2011-12
- Hurricane Isaac (HSDRRS Evaluation) 2012
- Jackson State University (IKE Dike evaluation) 2013
- North Atlantic Coast Comprehensive Study (NACCS) 2013-14

Innovative solutions for a safer, better world

٠

BUILDING STRONG®

CSTORM System Components 2014

- Winds/Pressure: PBL Cyclone Model
- Waves:
 - Regional: WAM
 - Nearshore: STWAVE*
- Circulation/Surge:
 - ► ADCIRC*
 - ► ADH*
- Morphology: SEDLIB/C2Shore
- Coupling Framework: CSTORM-MS*
- Graphical User Interface: SMS
- Unstructured Waves, Overland Flow, SEA Ice DEM FY15-17?

Earth System Modeling Framework (ESMF) Compliance

Multiple federal agency support ESMF

BUILDING

- ESMF compliant models are readily available to be linked with each other and with other agencies' ESMF compliant models.
- Individual models stay virtually autonomous when coupling.

Chris.Massey@usace.army.mil

An Example USACE Storm Surge Project

BUILDING STRONG_®

Tight Two-Way Coupling Circulation ←→ Wave

- One unstructured finite element circulation mesh
 - A single instance of ADCIRC/ADH
- One or more structured wave grids
 - Multiple instances of STWAVE
 - Half-Plane
 Full-Plane

Innovative solutions for a safer, better world

Chris Massey USACE-ERDC-CHL

SMS GUI's

Through the SMS GUI's users can setup and execute models as well as visualize model results.

BUILDING STRONG_®

Innovative solutions for a safer, better world

PO desa PO desa SIS Data

SMS GUI for Cyclone Models

- Setup and run the MORPHOS-PBL Cyclone Wind Model* *Updated version of TC96
- Import storms from HURDAT

Synthetic storm profile generation routine

Easily create perturbations for storm track/characteristic

Chris Massey USACE-ERDC-CHL

GFDL Geophysical Fluid Dynamics Laboratory

*GFDL Met Option for CSTORM

The NWS/Geophysical Fluid Dynamics Laboratory model. The GFDL and HWRF models are the only models that provide specific intensity forecasts of hurricanes. More detailed GFDL information is available at

http://www.gfdl.noaa.gov.

- 1. Operational Hurricane Forecast
- 2. Ensemble Hurricane Modeling

GFDL ensemble forecast for SANDY18L on 2012102512

Disclaimer: These are experimental research products and are not intended to replace the official forecasts issued by the National Hurricane Center and/or National Weather Service.

Click here for a printer-friendly display of all GFDL ensemble products for this forecast

List of most recently added forecasts:

Use the 'Products browser' to load the graphics for a particular forecast

Innovative solutions for a safer, better world

*This is an ongoing collaboration with Morris Bender and Matt Morin at NOAA's GFDL.

Chris Massey USACE-ERDC-CHL

GFDL Geophysical Fluid Dynamics Laboratory

*GFDL Ensemble for Hurricane Sandy

Ensemble Members

ATCF ID	Description
GP00/GT00	Control forecast (same model as NCEP 2013 operational GFDL)
GP01/GT01	Unbogussed forecast using the 2013 control model
GP02/GT02 ↑	Increase NHC-observed V _{max} 10%, 34-kt radii 25%, 50-kt radii 40%, ROCI 25%
GP03/GT03↓	Decrease NHC-observed V _{max} 10%, 34-kt radii 25%, 50-kt radii 40%, ROCI 25%
GP04/GT04 ↑	Modification to increase inner-core moisture by a max of 10%
GP05/GT05↓	Modification to decrease inner-core moisture by a max of 10%
GP06/GT06 ↑	Increase SSTs by a max of 1°C within the initial extent of the TC
GP07/GT07↓	Decrease SSTs by a max of 2°C within the initial extent of the TC
GP08/GT08 ↑	Surface physics modification: <i>GFDL 2011 operational formulation</i> of $C_D \& C_H$ (surface drag and enthalpy exchange coefficients)
GP09/GT09↓	Surface physics modification: HWRF 2012 operational formulation of $C_D \& C_H$ (surface drag and enthalpy exchange coefficients)
GPMN/GTMN	Ensemble mean computed at each lead time where the member availability is at least 4 members (40% threshold)
¥w¥	

Hourly Track and Intensity (kt) for SANDY18L GFDL ensemble forecast for the 126 hrs from 18Z270CT2012

g members (out of 10) at t=0: 0 SANDY18L observed center at initial time Track forecast positions are marked every 12 hrs GFDL Hurricane Dynamics Group

*This is an ongoing collaboration with Morris Bender and Matt Morin at NOAA's GFDL.

BUILDING STRONG®

Chris Massey USACE-ERDC-CHL

ADCIRC Sea Surface Elevations Using GFDL Ensemble (Sandy)

Ensemble Sea Surface Elevations at NOAA Station ID 8518750, The Battery, NY

BUILDING STRONG®

Chris Massey USACE-ERDC-CHL

Innovative solutions for a safer, better world

GP00 Maximum Water Elevation (MSL)

Maximum Sea Surface Elevation

GP00 Maximum Wind Velocity

13

Maximum Wind Velocity (Interpolated)

200

innovauve solutions for a safer, better world

DUILUING SI KUNG_®

ADCIRC Maximum Sea Surface Elevations/Wind Velocity (GP01)

GP01 Maximum Water Elevation (MSL)

Maximum Sea Surface Elevation

Maximum Wind Velocity (Interpolated)

200

minovauve solutions for a safer, better world

Chris Massey USACE-ERDC-CHL

DUILUING JI KUNG

ADCIRC Maximum Sea Surface Elevations/Wind Velocity (GP05)

GP05 Maximum Water Elevation (MSL)

Maximum Sea Surface Elevation

45 44 43 (500) 41 39 38

-72

-70

Longitude (Deg)

-68

-66

GP05 Maximum Wind Velocity

45

40

35

30

15

10

15

25 ਵਿੱ 20

Maximum Wind Velocity (Interpolated)

200

innovauve solutions for a safer, better world

DUILUING JI KUNGR

-76

-74

Chris Massey USACE-ERDC-CHL

46

37

Summary & Next Steps

- CSTORM-MS is a standardized, efficient, robust, extensible modeling system for quantifying the risk of coastal communities to storm events.
- Its' streamlined workflow saves time and reduces both computational and personnel cost.
- Linkage with GFDL ensemble products allows for "predictive" surge/wave modeling for impending coastal storm events.
- How to incorporate the ensemble "surge" results into a useful predictive product for USACE needs.

Ensemble Predicative Mode

Innovative solutions for a safer, better world

BUILDING STRONG®

Chris Massey USACE-ERDC-CHL