

Temperature Observations 26 Aug 12 00Z 4 km grid

Motivation

- In-situ sea temperature observations fill data void regions not covered by remotely sensed satellite observations
- Critical to improve coupled model TC forecasts (Sanabia et al. 2013)

Movie of SST observations from 26-29 Aug, 2012

Objective: Access the AXBT observing system data Impact on coupled COAMPS-TC forecast

Approach

- 1. Data denial in an observing system experiment (OSE) method
 - Ok to use to access the impact of a few instruments
 - Can be computationally expensive
 - Difficult to determine data impact due to analysis differences at each update cycle time and effect of air-sea coupling

2. Adjoint sensitivity method (Langland and Baker 2004; Cummings and Smedstad 2014)

- Computationally inexpensive
- Ideal for routine observational monitoring
- Adjoint sensitivity cost function: the difference between COAMPS 12 and 24h or 24h and 36h forecasts (forecast error gradients) valid at the same analysis time

COAMPS Model Configuration

GOM Conditions: Pre-Isaac

HYCOM SSH

http://www7320.nrlssc.navy.mil/GLBhycom1-12/navo/arc_list_glfmexssh.html

Discrepancies between the COAMPS initial GOM eddies with the CCAR and " HYCOM analysis results from:

- 1. Global model initial condition
- 2. Fewer observations in real-time

COAMPS Forecasts

2012082612-202082900

- COAMPS forecast intensities didn't reach CAT one strength
- Both the COAMPS internal and GFDL trackers failed for these weak storms
- A slightly better track with the AXBT assimilation

3/12/2014

GOM Conditions: Post-Isaac

₩¥ @7

OSC Experiment

$$e_{24} = \langle (x_{24} - x_a)(x_{24} - x_a) \rangle \\ e_{36} = \langle (x_{36} - x_a)(x_{36} - x_a) \rangle \\ \frac{\partial J}{\partial x_f} = e_{24} - e_{36}$$

Where $x_{24} x_{36}$ are forecast states and x_a is the verifying analysis

Assuming $\frac{\partial J}{\partial x_a} = \frac{\partial J}{\partial x_f}$ Cost function J is the differences between two forecast of different lengths valid at the same time (Langland and Baker 2004)

Limit on shorter forecast error estimate

Per-Observation Data Impact

Per-Observation Data Impact

XBTs

Drifting Buoys

Mean sea temperature forecast errors are reduced from the assimilation

Negative values indicate beneficial impact: Reduced 24 h model forecast errors

IHC, 2014 Sue Chen

Summary

- The AXBT data impact is examined in the data denial and adjoint sensitivity experiments
- The inclusion of the AXBT data assimilation yields a maximum 1°C reduction in the 24h model SST forecast errors
- The mean domain averaged SST difference in runs using or excluding the AXBT revealed the mean error growth is small prior to the 48h forecast time
- The adjoint sensitivity analysis suggests that assimilation of AXBT has a "beneficial impact" on reducing the ocean model 24h temperature forecast errors for the upper ocean
- Exclusion of the AXBT led to the westward displacement in the modeled position of the Gulf warm core eddy when compared to observations
- A maximum of ~0.3°C reduction in the 24h model forecast sub surface sea temperature error was seen in a large area right of the hurricane Isaac best track and north of WCE when AXBT is assimilated

Future Work

- Forecast sensitivities arising from the use of one meter vertical resolution AXBT
- Forecast sensitivities arising from higher model horizontal and vertical resolution
- Optimal AXBT sampling strategy

Supplement slides

Air-Ocean-Wave Coupled COAMPS Forecast and Data Assimilation System

GOM Conditions: Pre-Isaac

0 H

http://eddy.colorado.edu/ccar/ssh/hist gom grid viewer

http://www7320.nrlssc.navy.mil/GLBhycom1-12/navo/arc list glfmexssh.html

http://www.aoml.noaa.gov/photocophod1/workinghol2012238gosha.png 3/12/2014 IHC, 2014 Sue Chen

http://isotherrorsmas.miami.edu/heat/weba/atlantic.php/

2012082912 SST difference (without-with AXBT assimilations)

Isaac 25 Aug to 29 Aug 2012

Isaac 25 Aug to 29 Aug 2012

Per-Observation Data Impact Sea Gliders

Isaac 25 Aug to 29 Aug 2012 TESAC 0 -20 20 -50 50 - 100100 - 200200 - 300Depth 300 - 400400 - 500500 - 600600 - 800800 - 10001000 - 12001200 - 15000.0 0.0 -13.0-11.8Temperature Impact Salinity Impact

