Upper-Ocean Thermal Structure Variability during Hurricanes Ernesto and Isaac (2012)

Ellen K. Deckinga, William J. Schulz,
Elizabeth R. Sanabia, and Bradford S. Barrett
United States Naval Academy

Background / Purpose

- AXBT Demonstration Project
 - Goal: Increase hurricane forecast accuracy by assimilating ocean observations from beneath tropical cyclones into coupled numerical models in near-real time
 - Incremental objective (#1): Collect, process, and transmit AXBT data to coupled modeling centers in near-real time
- Sensing strategy development critical to "smart" collection, effectively employing limited resources
 - Challenge: optimize collection of upper-ocean temperature observations within an operational context
 - Currently: flight track and ocean-feature dependent (see Ernesto mission 0605A details from 05 August 2012 below)
 - Strategy: continue to improve initial conditions in the ocean component of coupled models
 - NRL MRY: Data denial study underway to identify optimal horizontal and vertical observation spacing (COAMPS-TC)
 - HERE: Climatology and variance in upper-ocean thermal structure are investigated and compared to observational data to
 determine potential areas where the use of climatology-based initial conditions may result in errant upper-ocean temperatures
- Focus for today
 - Comparison of Isaac and Ernesto AXBT observation data to climatological temperatures, OHC, and variance

Data and Methods

Data

- Master Oceanographic Observation Data Set (MOODS)
 - 50-yr subset (1960-2009) provided by NAVO
 - Included more than 752,000 observations from XBTs, AXBTs, CTD probes, and Nansen casts
 - Heavily concentrated along shipping routes
- AXBT Demonstration Project
 - Included 212 quality-controlled AXBT observations
 - Collected during Hurricanes Ernesto and Isaac in August 2012

Methods

- Developed monthly climatology temperature vs. depth profiles
 - MOODS profiles interpolated to 1-m vertical resolution
 - Averaged profiles in 1° x 1° grid boxes by month
 - Technique varied from other climatologies (e.g. Levitus, GDEM, MODAS, SMARTS)
- Analyzed TC-relevant ocean characteristics and variance of those characteristics
- Compared to Isaac and Ernesto AXBT data

Mean Temp (°C) at 100-m depth

Monthly MOODS Climatology

TC-relevant characteristics

- Focus: upper-ocean thermal structure
- Variables: SST, 50-, 100-, 150-, and 300-m temperatures, depth of the 26°C isotherm, OHC

• <u>100-m temperatures</u>

- Evolution of dynamic features
 - Loop Current
 - Gulf Stream
- Mean temperatures and positions

Variance of 100-m temperatures

Formula:

Variance =
$$\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

 High variance noted near dynamic features

Variance of Temp (°C)² at 100-m depth

Mean OHC (kJ/cm²)

Monthly MOODS Climatology

OHC mean

- Highest values
 - AUG: western Caribbean and Gulf of Mexico
 - NOV: western Caribbean
- More seasonality in OHC than T100
- Climatological zonal and meridional gradients in OHC in the central Caribbean

OHC variance

- Noisier than T100 variance
- High variance areas
 - Coincided with well sampled areas and primary ocean features (e.g. Gulf of Mexico, Gulf Stream)
 - Coincided with with regions of few profiles in the MOODS database (e.g. western Caribbean)

OHC Variance (kJ/cm²)²

AXBT deployments during Ernesto and Isaac (2012)

Ernesto

QC'd AXBT obs: 80

Missions: 7

Dates: 3-6 August 2012 Wind speeds: 40-55 kts

Tracked westward, transiting
 OHC gradients in the
 Caribbean.

 Achieved hurricane intensity prior to landfall over the Yucatan.

Isaac

QC'd AXBT obs: 132

Missions: 12

Dates: 21–30 August 2012 Wind speeds: 30-70 kts

- Transited the eastern edge of ^{24°N} the climatological mean position of the warm core eddy.

 The loop current was retracted and the WCE was west of its usual position

Caribbean Sea and Gulf of Mexico Analysis

Caribbean Sea

QC'd AXBT obs: 129 (80-E + 49-I)

Missions: 11 (7-E + 4-I)

Dates: 3-6, 21–24 August 2012

Wind speeds: 30-55 kts

 Right: Profiles of observed (AXBT) minus Climatology (MOODS) temperature differences

- Storms: Ernesto and Isaac

- Depth: 0-500m

Gulf of Mexico

QC'd AXBT obs: 65 (Isaac)

Missions: 6 (Isaac)

Dates: 27–30 August 2012 Wind speeds: 45-70 kts

 Right: Mean AXBT-MOODS difference profiles are depicted with thick vertical lines

Temperature Differences: AXBT minus MOODS

Caribbean Sea (129 profiles)

- Upper 50m:
 - Observed temperatures were slightly warmer than climatology
- 50-200m:
 - Ernesto: observed temperatures were slightly warmer than climatology and the observations were distributed across the Caribbean
 - Isaac: observed temperatures were slightly colder than climatology, and the observations were confined to the eastern Caribbean Sea and western Atlantic Ocean
- 200-500m:
 - Observed temperatures resemble climatology

Gulf of Mexico (65 profiles)

- Surface:
 - Observed temperatures were slightly colder than climatology
- 5-150m:
 - Observed temperatures <u>averaged 2°C warmer</u> than climatology
 - Consistent with results found in initial COAMPS-TC study
- 150-500m:
 - Close to climatology, slight cooling between 350-500m
- Not all climatological profiles extended to 500m
 - Resulted in discontinuity in deeper profiles

Targeting AXBT Observations based on Climatology

- Departure from climatology was not well explained by
 - OHC Variance
 - Temperature differences were not correlated to climatological OHC variance
 - Departures from climatology were found in regions of both high and low variance
 - Number of profiles in the climatology
 - Temperature differences were not correlated to number of observations
 - High departures from climatology were found throughout the range of observation density
- Based on these two cases, climatology alone appears insufficient for targeting AXBT deployment locations

Targeting AXBT Observations based on Climatology

- Departure from climatology was not well explained by
 - OHC Variance
 - Temperature differences were not correlated to climatological OHC variance
 - Departures from climatology were found in regions of both high and low variance
 - Number of profiles in the climatology
 - Temperature differences were not correlated to number of observations
 - High departures from climatology were found throughout the range of observation density
- Based on these two cases, climatology alone appears insufficient for targeting AXBT deployment locations

Summary and Future Work

Summary

- A climatology was created to aid in developing an AXBT Demonstration Project sensing strategy
 - Captured important dynamical features (e.g., Loop Current, Gulf Stream, WCE, and CCE)
 - AXBT observations from Hurricanes Ernesto and Isaac in 2012 revealed important sub-surface temperature departures from climatology
 - Differences between AXBT observations and climatology during Hurricanes Ernesto and Isaac in 2012 were unrelated to climatological variance and to the number of profiles in the climatology
- Climatology alone appears insufficient for targeting AXBT deployment locations and may also result in errant upper-ocean temperatures if used to initialize coupled models

Future Work

- Climatology
 - Conduct Principal Component Analysis to identify patterns in dynamical ocean features which may drive variance
- AXBT Demonstration Project Sensing Strategy
 - NRL MRY data denial study to identify optimal horizontal and vertical AXBT observation spacing
 - Detect sensitivity in coupled models through targeting techniques parallel to atmospheric techniques
 - Compare sensitive regions in coupled models to climatological variance, including other existing temperature climatologies

