2014 Tropical Cyclone Research Forum/68th Interdepartmental Hurricane Conference College Park, MD March 04, 2014

Developmental Testbed Center (DTC) Activities in Support of Transition of Research to the Operational Hurricane WRF model

Ligia Bernardet^{1*}, V. Tallapragada², T. Brown^{1*}, M. Biswas³, D. Stark³, S. Trahan^{2&}, and L. Carson³

¹NOAA ESRL Global Systems Division, Boulder CO

²NOAA NCEP EMC, College Park, MD

³National Center for Atmospheric Research, Boulder, CO

*University of Colorado CIRES, Boulder CO

[&]I. M. Systems Group, Inc., Rockville, MD

Acknowledgements to the HWRF collaborators at URI and at NOAA EMC, AOML/HRD, and GFDL Developmental Testbed Center—

Hurricane WRF history

Operational goal:

Provide tropical cyclone track and intensity guidance to the National Hurricane Center

2007: initial operational implementation

2007-2013: yearly upgrades

Intensity Errors (kt) in Atl

- Decrease yearly up to 96-h
- Approach 5-y goal of the Hurricane Forecast Improvement Project (HFIP)

How does improvement happen and what is the role of the Developmental Testbed Center in the process?

About HWRF: components

Atmospheric Pre-Processing WPS and prep_hybrid

Data Assimilation
Gridpoint Stat Interp (GSI)

Vortex Improvement HWRF Utilities

Tivita Canaes

Atmospheric Model

WRF

Postprocessing UPP

Vortex Tracker Geophys Fluid Dyn Laboratory

HWRF is a complex regional forecast system

- Eight software components + diagnostics/graphics/vx
- Running scripts
- Namelists
- Fixed files

Several HWRF components are used by wider community, in particular

- WRF/WPS (AFWA, NCEP RAP, SREF etc., research)
- GSI data assimilation (GFS, NAM etc.)

Potentially makes developments available for HWRF

HWRF code: divergence and unification of atmospheric component (WRF)

- 2007: HWRF initial operation
 - 2004: WRF code was obtained from community
 - 2004-2009: HWRF at EMC evolved and diverged from community
 - Operational HWRF could not benefit from HRD's HWRFX or community

WRF component integration

2009-2010: DTC/EMC integrated codes. Operations and community now use same source

2011-2014: HWRF code management maintains codes integrated, making available 3-nest configuration, physics (cu, microphysics, PBLs, and LSMs) and multiple moving nests (basinscale) for potential operational implementation

DTC Strategies to promote HWRF R20

Code Management

 Create a framework for NCEP and the research community to collaborate; maintain the code unified

DTC Visitor Program – some approved projects involving HWRF

- Development of an HWRF diagnostics module to evaluate intensity and structure using synthetic flight paths through tropical cyclones (J. Vigh - NCAR)
- Diagnosing tropical cyclone motion forecast errors in HWRF (T. Galarneau NCAR)
- Improving HWRF track and intensity forecasts via model physics evaluation and tuning (R. Fovell UCLA)

User and developer support

Support the community in using an operational hurricane model

Testing and Evaluation

 Perform tests to assure integrity of community code and evaluate new developments for potential operational implementation

www.dtcenter.org/HurrWRF/users

Support to users and developers

700 registered users

Stable well-tested code downloads, documentation, helpdesk

Yearly releases: current HWRF v3.5a (2013 operational)

Tutorials in 2014

- College Park, MD (Jan)
- Taiwan (May)

Support to developers

- Direct access to code repository
- Use of experimental configurations
- Code integration to avoid divergence
- Inter-developer collaboration

HWRF testing and evaluation by DTC

- Comprehensive T&E with DTC as a neutral evaluator
 - 2011: Cumulus parameterization
 - New SAS, Tiedtke, and Kain-Fritsh versus HWRF SAS
 - 2012: Atmosphere-ocean fluxes changes
 - Operational implementation HWRF FY2013
 - 2013: Alternate physics suite
 - Thompson microphysics and RRTMG radiation versus HWRF Ferrier microphysics and GFDL radiation

Test of HWRF with Thompson/RRTMG

	Control HC35	Experiment HDTR
Microphysics	Ferrier	Thompson
LW radiation	GFDL	RRTMG
SW radiation	GFDL	RRTMG
Cumulus	SAS	SAS
PBL	GFS	GFS
LSM	Slab	Slab
Dynamics (s)	45/15/5	45/15/5
Phys (s)	90/ 90/30	90/ 60/20
Radiation (min)	60/60/60	15/15/15

Domains, initialization, cycling etc. same as operational HWRF

Cases: 2012 season for AL and EP

HDTR = Experiment HC35 = Control

Track error

North Atlantic

Eastern North Pacific

Experimental configuration improves track for AL but degrades for EP

HDTR = Experiment HC35 = Control

Intensity mean absolute-error and bias

Experiment: AL increased intensity for short lead times, decreased for longer lead times EP decreased (degraded) intensity

10

HDTR = Experiment HC35 = Control

Advanced diagnostics: precipitation bias

Cases: Hurricane Sandy

storm): High overprediction.

Later in the forecast: models away from best track, therefore underprediction on this domain

Subdomain (10 deg centered on Sandy's entire track): both configurations overpredict

Entire domain: positive bias

Higher bias in experiment

Advanced diagnostics: large-scale

HWRF forecasts vs GFS analyses

- T, geopotential height, RH, wind speed
- Various levels
- Bias and RMSE computed for 2012 season

Example: 48-h 250-hPa wind speed bias for control is mostly negative

Is this bias important to understand intensity forecast errors?

Advanced diagnostics: SHIPS predictors

Background

- De Maria and Kaplan (1999) showed that TC intensity can be explained by near-storm environmental factors: shear, moisture content, upper level winds etc (SHIPS predictors)
- Therefore, it is important to forecast the environment accurately

Comparison of near-storm environment in HWRF forecasts and GFS analyses

Comparison of near-storm environment errors against intensity errors

Summary

- Code management and user support
 - Well established and successful
- Testing of innovations
 - Been successful with R2O transition for atmos-ocean fluxes
 - Produced negative (cumulus) or mixed (Thompson) results
 - Requires the use of innovative, advance diagnostic tools
 - Suggests that a closer partnership between DTC and developers is needed because innovations need to be tested-tuned-retested in HWRF context
- Going forward: DTC plans to partner with HFIP PIs to facilitate adding innovations and conducting testing