

Global Modeling and Assimilation Office Goddard Space Flight Center National Aeronautics and Space Administration http://gmao.gsfc.nasa.gov

GEOS-5

3.5-km Clouds

Next Generation Weather Prediction Research at NASA GMAO

Bill Putman (presenter) Michele Rienecker Ron Gelaro Arlindo da Silva Max Suarez Ricardo Todling Andrea Molod Donifan Barahona Next-Generation Global Weather Prediction Research at NASA GMAO

Multi-Scale Modeling Approach

Seamless prediction in a unified model development framework

A comprehensive global model for:

simulation – assimilation – weather – climate

Various resolutions

1-deg (climate) ¹/₄-deg (weather) 10- to 3.5-km (mesoscale)

Hydrostatic and non-hydrostatic

Resolution dependent physics parameterizations

- Moist processes and aerosol cloud interactions
- Multi-moment cloud micro-physics
- Cloud and deep convective parameterization
- Non-precipitating shallow convection
- Gravity wave drag

Multiple HPC platforms [Including accelerators GPUs/MICs]

Within a single codebase and a single build

National Aeronautics and Space Administration

7-km GEOS-5 Cloud Optical Thickness

MODIS Cloud Optical Thickness

The Goddard Earth Observing System model (GEOS-5)

- Non-Hydrostatic Cubed-Sphere Finite-Volume dynamics (in collaboration with SJ Lin at GFDL)
- Relaxed Arakawa-Schubert convection scheme (Moorthi and Suarez, 1992)
 - Includes a stochastic trigger for deep convection (Tokioka, 1988)
- Prognostic cloud cover and cloud water/ice schemes
 - includes large scale condensation, evaporation, autoconversion and accretion of cloud water and ice, sedimentation of cloud ice and re-evaporation of falling precipitation (Bacmeister et al., 2006)
 - Two-moment cloud microphysics for stratus (Morrison and Gettelman, 2008) and convective (Barahona et al. 2013) clouds.
 - Explicit ice nucleation (Barahona and Nenes, 2009) and CCN activation (Fountoukis and Nenes, 2005) coupled to the aerosol.
- Longwave radiative processes (Chou and Suarez, 1994) [options to use RRTMG]
- Shortwave radiative processes (Chou, 1990 and 1992) [options to use RRTMG]
- Turbulence parameterization is based on the Lock (2000) scheme, acting together with the Richardson-number based scheme of Louis and Geleyn (1982)
- Monin-Obukhov surface layer parameterization (Helfand and Schubert, 1995)
- Gravity wave parameterization computes the momentum/heat deposition into the gridscale flow due to orographic (McFarlane, 1987) and nonorographic (after Garcia and Boville, 1994) gravity wave breaking
- Catchment based Land Surface Model (Koster et al, 2000)

Next-Generation Global Weather Prediction Research at NASA GMAO

Relaxed Arakawa-Schubert (RAS) Convection

Stochastic Determination of Cumulus Entrainment in RAS

Based on Tokioka et al. (1988) Minimum entrainment rate:

 μ _min= 0.2/MAXD where MAXD is a resolution dependent parameter specifying the diameter for the largest convective plume

- Stochastic determination of the Tokioka limit determined at random
- Selective suppression of RAS convection scheme as we move to higher resolution

2009 Atlantic Hurricane Bill

Mostly highly-entraining

Shallow plumes

Probability

Occasional deep plumes

Next-Generation Global Weather Prediction Research at NASA GMAO

Numerical Weather Prediction *Hurricane Sandy*

- Accurate 5-day Track Forecasts from GEOS-5
 ¼-deg particularly from Oct 26 through landfall
- High-resolution improves intensity and structure
 Fine-scale details of surface winds and eye-wall
 Fidelity of warm front in the northeast quadrant

الأَنْ عَالَا عَنْ عَالَهُ عَالَهُ عَالَهُ عَالَهُ عَالَةً عَالَهُ عَالَهُ عَالَهُ عَالَهُ عَالَهُ عَالَهُ عَال http://gmao.gsfc.nasa.gov/research/atmosphericassim/tracking_hurricanes/

Statistical Distribution of Detected Cloud Clusters

Deep convective clusters detected from GEOS-5 and IR observations in the tropics [15-19 September 2010]

- Detected clusters (top) and probability distributions (bottom) of detected cloud clusters
- IR observations compared to GEOS-5 with increasing resolution [28-km 14-km 7-km] (bottom-left)
- IR observations compared to GEOS-5 varying dynamics/physics coupling time-step at 14-km (bottom-right)

Fine-scale structure of tropical cyclones (divergence)

٠

0.03

0.1 -0.25

-0.73

5.5

-7

-8.5

2005 (Jun-Dec)		2006 (Jan-Dec)			
North Atlantic		North Atlantic			
	10-km GEOS-5	Obs		10-km GEOS-5	Obs
Storms	23	28	Storms	10	10
TS	7	13	TS	3	5
Hurr	16	15	Hurr	7	5
Major	6	7	Major	3	2

10-km GEOS-5 Global Mesoscale Simulation

- In addition to providing a realistic representation of the meteorology
- Using GOCART the simulation also provides aerosol direct effects including: global aerosol distribution – aerosol vertical profiles – aerosol optical thickness

Dust (red-orange) – Organic and black carbon (green) – Sea salt (blue) – Sulfates (white)

4d-Atmospheric Data Assimilation

- Future 4d-strategy will be ensemble-based in one of following flavors:
 o Hybrid-4d-Var flow-depended initial error covariance
 - o 4d-Ens-Var ensemble replaces TL and AD models
- Analysis core: Gridpoint Statistical Interpolation (GSI)
- GEOS-5 GCM using cubed-sphere dynamics
- Assimilation still based on incremental analysis update (IAU)
- Implementation will be an upgrade on current 3d-hybrid development

Computational Costs

10-day AMIP-Style simulation at 72 levels

<u>Resolution</u>	CPUs	WallClock Time (Hours)
b72 (2-deg)	48	0.25
c72 (1-deg)	96	0.5
d72 (0.5-deg)	384	1
e72 (0.25-deg)	768	4.75
c720 x 72L (14-km)	1350	8
c1440 x 72L (7-km)	4000	22

Scaling for Lat-Lon Version at d72 (1/2 deg)				
Layout NX	Layout NY	Total PEs	Total Time (hrs)	
6	36	216	1.72	
8	48	384	1.21	
12	72	864	0.72	

Scaling for Cubed-Sphere Version at c180 (1/2 deg)					
Layout NX	Layout NY	Total Pes	Total Time (hrs)	Speedup from Lat-Lon	
6	36	216	1.49	1.15x	
8	48	384	0.61	1.98x	
12	72	864	0.35	2.06x	