

PURDUE UNIVERSITY

WIND SPEED RETRIEVAL FROM DIGITAL COMMUNICATION AND GPS SIGNALS

Rashmi Shah, James Garrison, Nicole Quindara Radio Navigation Laboratory School of Aeronautics and Astronautics Purdue University

Outline

PURDUE UNIVERSITY

• Background

- Past Heritage with GNSS-R
- Motivation
- Objective
- Recent Demonstration with S-Band Signals
- Retrievals from Simulation
- Description of Flight-Certified Instrument
- Summary and Future Work

Ocean Roughness/Wind Speed

Fundamental Physics:

Rougher surface = larger distribution in path delays

GNSS-R Experience

- PURDUE UNIVERSITY
- GNSS-R receivers on NOAA flights since 2000
- Calibration with wind speed up to Hurricane speeds.

- Why Digital Communication Signals?
 - Noise-like transmission generates range-bins
 - Free transmitters > 400 satellites
 - Higher transmitted power: Better accuracy
 - Geostationary orbit: Fixed geometry
 - Low-Cost receiver (all consumer electronics)
- Demonstrated using XM radio signals (S-band)

Objectives

- To demonstrate reflectometry with digital communication signals
- To quantify wind speed retrieval error: GPS vs. XM
- Plan for high-speed retrieval from XM instrument

2010 Experiment

PURDUE UNIVERSITY

Waveforms (2010)

IHC - Charleston, SC - March 5-8, 2012

RDUE

Wind Retrieval (2010)

• Chesapeake Light (CHLV2): **7.5 m/s** (MSS = 0.0010)

IHC - Charleston, SC - March 5-8, 2012

RDUE

2012 Experiment

PURDUE UNIVERSITY

Waveforms (2012)

IHC - Charleston, SC - March 5-8, 2012

RDUE

Simulated Retrievals

Flight Certified XM Instrument PURDUE

FROMT VIEW

BACK VIEW

Summary and Future Work PURDUE

Summary

- GPS reflectometry heritage
- Recent demonstration with XM signal
 - -+30 dB SNR increase
 - S-band vs. L-band

– Small, low power, autonomous instrumentation **Future Work (Proposed)**

- Fly XM receiver during 2012 Hurricane Season

Acknowledgements

- Rashmi Shah was supported by the NASA Earth and Space Sciences Fellowship (NESSF), [Grant NNX11AL47H] and the Amelia Earhart Fellowship.
- The authors would also like to thank Derek Burrage and Joel Wesson of the Naval Research Laboratory (NRL) for inviting our participation in the 2012 experiment.
- Nicole Quindara's participation in the 2012 experiment was partially supported by NRL.
- Flights and aircraft installation were performed by Rick Aviation, Newport News, VA.

Thank you for your attention!

Questions?

References

- J.L. Garrison, A. Komjathy, V.U. Zavorotny, and S.J. Katzberg, "Wind speed measurement using forward scattered GPS signals," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 40(1), pp. 50–65, 2002.
- J.L. Garrison, S.J. Katzberg, and M.I. Hill, "Effect of sea roughness on bistatically scattered range coded signals from the Global Positioning System," *Geophys. Res. Lett*, vol. 25(13), pp. 2257–2260, 1998.
- E. Cardellach and A. Rius, "A new technique to sense non-Gaussian features of the sea surface from L-band bi-static GNSS reflections," *Remote Sensing of Environment*, vol. 112, no. 6, pp. 2927 – 2937, 2008.
- R. Shah, J.L. Garrison, M.S. Grant, and S.J. Katzberg, Analysis of correlation properties of digital satellite signals and their applicability in bistatic remote sensing," *Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium*, pp. 4114–4117, July 2010.
- S.J. Katzberg, O. Torres and G. Ganoe, "Calibration of reflected GPS for tropical storm wind speed retrievals," *Geophys. Res. Lett*, vol. 33, L18602, 2006.

Backup Slides

XM: Ambiguity Function

Delay Dimension $|\chi(au,0)|^2$

Doppler Dimension $|\chi(0,f_c)|^2$

Assumption of long, random, uncorrelated data bit stream validated

Previous Work

Global Navigation Satellite System Reflectometry (GNSS-R)

- First demonstration of remote sensing with "signals of opportunity"
- Retrieval of ocean surface roughness, wind speed and direction
- 12 Years of development: airborne (NOAA Hurricane Flights)
- GNSS-R enabled by use of known pseudo-random noise (PRN) code

Digital Communication Signals Reflectometry

- Expand methods to other "signals of opportunity"
- Demonstrated with XM digital radio
 - Commercial satellite radio system in the US

2012 Experiment

PURDUE UNIVERSITY

XM System

PURDUE UNIVERSITY

- Two active geostationary satellites:
 - Rhythm (85°W), Blues (115°W)
- **QPSK** Modulated, LHCP Signal

Instrument for NOAA Flights

RDUE

Glistening Zone

- PURDUE UNIVERSITY
- Blues: Semi-major = 4.76km, Semi-minor = 2.47km
- Rhythm: Semi-major = 5.40km, Semi-minor = 2.80km

IHC - Charleston, SC - March 5-8, 212

Airborne Experiment: Geometry

- Experiment conducted: 02-July-2010 in Piper Navajo
- Experiment time period: 07:51AM EDT 09:19AM EDT

Data Processing

- Estimation process for Wind Speed
 - Isotropic normal PDF assumed
 - Nonlinear least squares estimation

$$J_{SV}(X_{SV}) = \sum_{k} \left(|Y_{SV}(\tau_{k}, 0)|^{2} - |Y_{M}(\tau_{k}, 0; X_{SV})|^{2} \right)^{2}$$
$$X_{SV} = \left\{ \sigma^{2}_{ISO_{SV}}, S_{SV}, \tau_{0_{SV}} \right\}$$

 $\sigma^2_{ISO_{SV}}$ = Mean Square Slope (MSS)

 S_{SV} = Scale factor (remove variation in signal power)

 $\tau_{0_{SV}}$ = Delay offset (adjust small uncertainties in delay)

Independent estimate for each satellite

Simulation of Waveform

- Assume no bin-bin correlation
- Assume inphase and quadrature phase component to be independent normally distributed random variables
- Assume isotropic Gaussian distribution for PDF

$$- (\sigma_{\rm ISO} = \sigma_{\rm u} = \sigma_{\rm c})$$

• Voltage signal:

$$Y_{s}(\tau, 0; P_{\vec{v}}) = \sqrt{\frac{|Y(\tau, 0; P_{\vec{v}})|^{2}}{2}} Z_{s} + \sqrt{\frac{N_{0}}{2T_{I}}} Z_{n}$$

• Synthetic Waveform

$$\left\langle |Y(\tau,0;P_{\vec{v}})|^2 \right\rangle = \frac{1}{M} \sum_{i=1}^M Y_{s_i}(\tau,0;P_{\vec{v}}) Y_{s_i}^*(\tau,0;P_{\vec{v}})$$

Link Budget

PURDUE UNIVERSITY

	XM (2)	GPS (1)	Unit
EIRP	68.5	26.3	dBW
Range	35888.0	22020.0	km
Path Loss	-162.1	-157.8	dB
Atmospheric loss	0.5	0.5	dB
Received Power Density	-94.1	-132.1	dBW/m ²
Effective Area	-28.8	-25.4	dBm ²
Received Isotropic Power	-122.9	-157.5	dBW
Antenna Gain	2.0	2.0	dBic
Received Signal Power	-120.9	-155.5	dBW
Noise Floor	-204.0	-204.0	dBW/Hz
C/N0	83.1	48.5	dB-Hz
Noise Figure	4.0	1.0	dB
Pre-Correlation, C/N0	79.1	47.5	dB-Hz
Bandwidth	62.7	63.1	dB-Hz
Pre-Correlation, S/N	16.4	-15.6	dB
Processing Gain	32.1	30.1	dB
Post Correlation, S/N	48.5	14.5	dB

Receiver

Ocean Roughness/Wind Speed

larger distribution in path delays

Fundamental Physics:

Rougher surface =

This phenomenon can easily be observed at sunset: (water is calm inside the red ellipse)

(From Chapron and Ruffini, GNSS-R workshop, Barcelona. Photo taken at Le Conquet, Brittany)

GNSS-R Experience

PURDUE UNIVERSITY

GNSS-R Experience

- PURDUE UNIVERSITY
- GNSS-R receivers on NOAA flights since 2000
- Calibration with wind speed up to Hurricane speeds.

