Assimilation of HIWRAP Doppler
velocity data during HS3: An example
from Hurricane Karl (2010)

Jason Sippel and Scott Braun - NASAs
GSFC

Yonghui Weng and Fuqging Zhang - PSU



Background

Why assimilate HIWRAP Vr?

e HIWRAP is a new Doppler
radar onboard NASAs
Global Hawk
— 26-h flight time; 330-kt

cruise speed at; 19-km
altitude

— Flights will allow for better
observations of nearby
storms and distant storms

e Assimilating Doppler
velocities (e.g., 88-D and
P-3) leads to better
analyses and forecasts

-

| Global Hawk at
NASA’s Dryden
= hangar

lIIIII IIIIII i AREERE
‘_III REAEED BED— BEEEEN

(Left) Observed reflectivity and (right) EnKF-
analyzed reflectivity of Hurricane Humberto



Background

Background: Ensemble Kalman filter

Least squares approach for scalar data
assimilation (e.g., temperature)
o 2 02 T, = analysis
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O'fQ = forecast error

Rearrange to variance
1" = observation
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Background

Background: Ensemble Kalman filter

Example for model state
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x, = analysis (posterior)
z, = torecast (prior)
provided by ensemble
Jr = ensemble mean
forecast estimate of y
P, = error covariance
from ensemble

y, = observation

R = observation error
variance



Objectives

1. Generate a 48-h ensemble without data assimilation

2. Select ‘truth’ realizations for simulated data
experiments

3. Assimilate simulated HIWRAP observations with an
ensemble Kalman filter (EnKF)

4. Assess quality of analyses and forecasts



Methods

WREF-EnKF system

e EnKF from Zhang et al. (2009)
e WRF-ARW V3.1.1,27/9/3 km

e 30-member ensemble + 1
‘truth’ member, IC/BCs from
WRF-VAR + GFS

e |nitialized at 00 UTC 16
September, integrated 12 h Model domains
to generate mesoscale
covariance

* YSU PBL, WSM-6 mp



Methods

Selecting ‘truth’ realizations

‘Truth’ realizations and NODA forecasts
Realizations selected to test
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Methods

“Truth’ simulation flight tracks

= Truth1 track 12-24 h

* |[nstantaneous scans every ~28

km; observation cones slightly
overlap at surface

e Data grouped into 1-h flight M;
segments from same output |
time; ~1900 obs/hr

Observations
every ~3 km on
cone surface

e Add 3 m/s random error, only
assimilate when attenuated dBZ o
> 10




Assimilating one observation

e Observation details:

- Time: 19 h
Height: 3 km
Azimuth: O (East)
Observed Vr: +12.16 m/s
Forecast Vr: +6.0 m/s

e Forecast error covariance
spreads observation impact to
surface, helping to spin up
vortex and lower SLP

Methods

(b) SLP increment

©) Observation location
¢ Prior min SLP
Posterior min SLP




Results: CTRL analyses evolution

e CTRL1: small
corrections to

location and min
SLP

e CTRL2: large
correction to
location, SLP
takes longer
correct

OSSE Results

EnKF analyses of minimum SLP and track
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OSSE Results

Results: Analysis error reduction

e EnKF reduce RM-DTE >
80% after 13 cycles in
both cases [DTE = 0.5
(u'u +Vv'v + Cp/Tr
TT), primeis
difference from truth]

(24-h)

(b) RMDTE -RMDTE

CTRL2 NODA-DET

e CTRL2 has larger and
more widespread error
reduction than CTRL1

Comparison of RM-DTE differences



OSSE Results

Results: CTRL1 after 13 cycles
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Comparison of TRUTH1, NODA ensemble mean and CTRL1 EnKF analysis at 24 h, after 13 h of assimilation



OSSE Results

Results: Deterministic forecasts

Determinstic forecasts of min SLP, max 10-m wind and
track initialized from EnKF analyses

e Forecast error is i
reduced relative to V
NODA in both cases, e |
particularly from 36- o
48 h (a) CTRL1, min SLP (b) CTRL2, min SLP
* NODA2 needs more ;
time to produce | <
. (c) CTRL1, max wind (d) CTRL2, max wind
better analyses (I.e.’ 12h 952:: 360 Qowmh 12h 952:\:1 36h 90W48h
that produce ‘good’
forecasts) TReo o
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Summary

 HIWRAP data appears to be useful for EnKF analyses and subsequent
forecasts of a hurricane

e Analysis error reduced >80% after 13 cycles with stronger error
reduction for a poor first guess

 Notable improvements in forecast strength and position after just one
assimilation cycle

* Alonger assimilation window appears to benefit forecast more,
particularly when the first guess is poor; this particularly highlights
the benefit of the long Global Hawk on-station time



Results: Ensemble fcst SLP

OSSE Results

e Significant ensemble forecast differences result from
changing 1 cycle of random observation error

e 12 h of cycling again more beneficial than 6 h

e Variable-leg pattern does not result in better forecasts

Deterministic forecasts of
min SLP: a comparison of No
DA and DA experiments and
sensitivity to one cycle of
different observation error

Ensemble forecasts of minimum SLP initialized from EnKF analyses at 12, 18, and 24 h
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