Assimilation of HIWRAP Doppler velocity data during HS3: An example from Hurricane Karl (2010)

Jason Sippel and Scott Braun - NASAs GSFC

Yonghui Weng and Fuqing Zhang - PSU

Why assimilate HIWRAP Vr?

- HIWRAP is a new Doppler radar onboard NASAs Global Hawk
 - 26-h flight time; 330-kt cruise speed at; 19-km altitude
 - Flights will allow for better observations of nearby storms and distant storms
- Assimilating Doppler velocities (e.g., 88-D and P-3) leads to better analyses and forecasts

(Left) Observed reflectivity and (right) EnKFanalyzed reflectivity of Hurricane Humberto

Background: Ensemble Kalman filter

Least squares approach for *scalar* data assimilation (e.g., temperature)

$$T_a = \frac{\sigma_o^2}{\sigma_f^2 + \sigma_o^2} T_f + \frac{\sigma_f^2}{\sigma_f^2 + \sigma_o^2} T_o$$

Rearrange to

$$T_a = T_f + \frac{\sigma_f^2}{\sigma_f^2 + \sigma_o^2} (T_o - T_f)$$

$$T_a = analysis$$

$$T_f =$$
forecast

$$\sigma_f^2$$
 = forecast error variance

$$T_o = observation$$

$$\sigma_o^2$$
 = observation error variance

Background: Ensemble Kalman filter

Example for model state

$$x_a = x_f + \frac{P_{fxy}}{P_{fyy} + R} (y_o - y_f)$$

 $x_a = \text{analysis (posterior)}$ $x_f =$ forecast (prior) provided by ensemble y_f = ensemble mean forecast estimate of y P_f = error covariance from ensemble $y_o = observation$ R =observation error variance

Source: Snyder and Zhang (2003)

Objectives

- 1. Generate a 48-h ensemble without data assimilation
- 2. Select 'truth' realizations for simulated data experiments
- Assimilate simulated HIWRAP observations with an ensemble Kalman filter (EnKF)
- 4. Assess quality of analyses and forecasts

WRF-EnKF system

- EnKF from Zhang et al. (2009)
- WRF-ARW V3.1.1, 27/9/3 km
- 30-member ensemble + 1 'truth' member, IC/BCs from WRF-VAR + GFS
- Initialized at 00 UTC 16
 September, integrated 12 h
 to generate mesoscale covariance

Model domains

YSU PBL, WSM-6 mp

Selecting 'truth' realizations

Realizations selected to test EnKF performance in face of:

- Small error of the prior
 How much improvement does
 the EnKF offer when the forecast
 is already pretty good? (NODA1)
- Large error of the prior
 How well can the EnKF correct
 when the truth is unlike most of the prior? (NODA2)

'Truth' realizations and NODA forecasts

'Truth' simulation flight tracks

- Instantaneous scans every ~28 km; observation cones slightly overlap at surface
- Data grouped into 1-h flight segments from same output time; ~1900 obs/hr
- Add 3 m/s random error, only assimilate when attenuated dBZ
 > 10

Assimilating one observation

Observation details:

- Time: 19 h

- Height: 3 km

- Azimuth: 0 (East)

- Observed Vr: +12.16 m/s

- Forecast Vr: +6.0 m/s

 Forecast error covariance spreads observation impact to surface, helping to spin up vortex and lower SLP

Results: CTRL analyses evolution

- CTRL1: small corrections to location and min SLP
- CTRL2: large correction to location, SLP takes longer correct

Results: Analysis error reduction

- EnKF reduce RM-DTE > 80% after 13 cycles in both cases [DTE = 0.5 (u`u` + v`v` + Cp/Tr T`T`), prime is difference from truth]
- CTRL2 has larger and more widespread error reduction than CTRL1

Comparison of RM-DTE differences

Results: CTRL1 after 13 cycles

Comparison of TRUTH1, NODA ensemble mean and CTRL1 EnKF analysis at 24 h, after 13 h of assimilation

Results: Deterministic forecasts

- Forecast error is reduced relative to NODA in both cases, particularly from 36-48 h
- NODA2 needs more time to produce better analyses (i.e., that produce 'good' forecasts)

Summary

- HIWRAP data appears to be useful for EnKF analyses and subsequent forecasts of a hurricane
- Analysis error reduced >80% after 13 cycles with stronger error reduction for a poor first guess
- Notable improvements in forecast strength and position after just one assimilation cycle
- A longer assimilation window appears to benefit forecast more, particularly when the first guess is poor; this particularly highlights the benefit of the long Global Hawk on-station time

Results: Ensemble fcst SLP

- Significant ensemble forecast differences result from changing 1 cycle of random observation error
- 12 h of cycling again more beneficial than 6 h
- Variable-leg pattern does not result in better forecasts

Deterministic forecasts of min SLP: a comparison of No DA and DA experiments and sensitivity to one cycle of different observation error

