

Session 4b: Observations and Observing Strategies for Tropical Cyclones and their Environment, Part 2:

S4b-03. New eyewall dropsonde observations during rapid intensification events in Super-Typhoons Megi (2010) and Jangmi (2008)

P. G. Black¹, A. B. Penny², R. Creasey² and P. A. Harr²

¹Naval Research Laboratory and SAIC, Inc. Monterey, CA ²Naval Postgraduate School Monterey, CA

66th Interdepartmental Hurricane Conference, Charleston 2012

Motivation:

- There has been little improvement in TC intensity prediction in the past 20 years in Atlantic and WPAC basins.
- There has been little improvement in TC track forecasts in the past 6 years in WPAC: limit of predictability with satellite data inputs reached?
- Super-Typhoon boundary layer physics may need to be modified.

Goals and Objectives:

- Utilize dropsonde-pair observing strategy to investigate unusual extreme wind boundary layer features.
- Relate extreme wind boundary layer features to microscale eyewall 'vortex filaments' and eye mesovortex features.

66th Interdepartmental Hurricane Conference, Charleston 2012

66th Interdepartmental Hurricane Conference, Charleston 2012

Megi 17 Oct 2010 1008 Z

66th Interdepartmental Hurricane Conference, Charleston 2012

COSMO SKYMED-3 SAR: 0925 UTC

66th Interdepartmental Hurricane Conference, Charleston 2012

C-150J C-Dand Weather Radar: 1115 UTC

66th Interdepartmental Hurricane Conference, Charleston 2012

Super-Typhoon Eyewall Boundary Layer Structure

TPARC/TCS08 - ITOP/TCS10

Super-Typhoon Eyewall Boundary Layer Structure

TPARC/TCS08 - ITOP/TCS10

New Features in Extreme Wind Boundary Layer- Megi

- Simultaneous sonde pair launches reveal strong/weak shear couplets: mesoscale influence
- Constant Wind Layer (30 m) violates 'log' law: air/water (spray) slurry may act as no-slip layer
- Wind max (210 m) below top of mixed layer (250 m) in contrast to reverse at larger radii
- Shallow inflow layer (600 m)

66th Interdepartmental Hurricane Conference, Charleston 2012

New Features in Extreme Wind Boundary Layer- Megi

66th Interdepartmental Hurricane Conference, Charleston 2012

66th Interdepartmental Hurricane Conference, Charleston 2012

66th Interdepartmental Hurricane Conference, Charleston 2012

Super-Typhoon Eyewall Boundary Layer Structure

TPARC/TCS08 - ITOP/TCS10

66th Interdepartmental Hurricane Conference, Charleston 2012

Features seen before, but impact not understood!

66th Interdepartmental Hurricane Conference, Charleston 2012

Key Results

TC Rapid Intensification cycle associated with unusual boundary layer structures

• Eyewall microscale/ mesoscale features modulate high-wind boundary layer structure

•High-wind eyewall surface layer observed for the first time by new dropsondes differs from prior observational extrapolation.

• Apparent mesoscale modulation of super-typhoon eyewall air-sea transfer processes induces episodic weak-shear and strong-shear eyewall couplets which violate standard boundary layer 'log law' and differs from prior observational extrapolation and existing model parameterizations.

Future Dreams

•Continue development of rapid deployment sonde with IR SST sensor

Improved eyewall structure understanding from WC-130J

Rapid inner core deployment from Global Hawk for improved storm scale and environmental monitoring

•Re-institute WPAC recco with WC-130J for inner core monitoring and DoD Global Hawk for environmental monitoring: a pathway to renewed track prediction improvement and initiation of intensity prediction improvement

• Continue development of 'Combo' dropsonde/AXBT deployments in anticipated RI situations. 66th Interdepartmental Hurricane Conference, Charleston 2012 Office of the Federal Coordinator for Meteorology