U.S. IOOS Coastal Ocean Modeling Testbed

A Testbed for the Evaluation of Coupled Wave, Storm Surge and Inundation Models for Tropical Storms

Rick Luettich, University of North Carolina at Chapel Hill

Linda Akli, Gary Crane, SURA Jesse Feyen, NOAA CSDL Anne Kramer, Amy Haase, Arthur Taylor, NOAA MDL Jamie Rhome, Cristina Forbes, NHC Don Slinn, Univ Florida Harry Wang, VIMS Joannes Westerink, Patrick Kerr, Aaron Donahue, Univ Notre Dame Lianyuan Zheng, Bob Weisberg, Univ South Florida *Numerous Other Contributors*

6 March 2012 66th Annual Interdepartmental Hurricane Conference

Objectives

Provide evaluation of models in or under consideration for "operational use"

- Implementation requirements
 - Resolution
 - Physics
 - Parameterization
 - Computer capacity
- Payoff
 - Accuracy
 - Robustness
 - Execution speed

Objectives

Develop testbed infrastructure to greatly facilitate future model evaluation

- Standards
- Interoperability
- Model evaluation tools (e.g., IMEDS skill assessment)
- Data/model archives and access

TC Testbed Domain: Gulf of Mexico

Tides, Hurricanes Ike (2008), Rita (2005)

TC Models & Participants

ADCIRC + unstructured SWAN

• Joannes Westerink – U Notre Dame

FVCOM + SWAN

• Bob Weisberg – U South Florida

SELFE + WWM II

• Harry Wang – VIMS

SLOSH + SWAN

- Don Slinn U Florida
- Arthur Taylor, Amy Haase, Ann Kramer, Cristina Forbes, Jamie Rhome NOAA

MANY OTHER WORKERS

Unstructured Base Grid

OBSERVING SYSTEM

SR

High Resolution Grid vs Base Grid

Inter-grid comparison

SLOSH Grids

Galveston 3 Slosh Basin

Sabine Pass Slosh Basin

500-2,000 m resolution

GoMx Extratropical Storm Surge Grid 185,409 nodes, ~3,000m resolution

Hurricane Ike (2008)

r09 c8+tides Water Surface Elevations + Winds

LANDFALL 0 hrs

+ 6 hrs

Hurricane Ike: Measured Time Series Data

- Water Level
 - CRMS (487)
 - CSI (6)
 - NOAA (40)
 - TCOON (26)
 - UNDKennedy (8)
 - USACE(52)
 - USACE-CHL(6)
 - USGS-PERM (59)
 - USGS-DEPL (105)
- Significant Wave Height
 - CSI (6)
 - NDBC (10)
 - USACE-CHL (6)
 - UND Kennedy (8)

- Mean Wave Direction
 - CSI (6)
 - NDBC (10)
- Mean Wave Period
 - CSI (6)
 - NDBC (10)
 - USACE-CHL (6)
- Peak Wave Period
 - CSI (6)
 - NDBC (10)
 - USACE-CHL (6)
 - UND Kennedy (8)

3

2

3

Water Level (m)

UND.SELFE.lke.2Dvrwww elev (m): 2008-09-12 19:00Z

UND.FVCOM.lke.2Dvrwww zeta (meters): 2008-09-12 19:00Z

UND.SELFE.lke.2Dvrwww elev (m): 2008-09-13 07:00Z

zeta (meters): 2008-09-13 07:00Z

Inter Grid Comparison Hurricane Ike

Inter Grid Comparison Hurricane Ike

Inter Grid Comparison Hurricane Ike

Hurricane Rita (2005)

Conclusions – Hurricane Wind Waves

- In general, the base resolution grid performs quite well for open water and near shore waves.
- Inland locations will require more detailed resolution to better capture propagation and feature driven depth limited breaking and attenuation

Conclusions – Hurricane Storm Surge

- ADCIRC and SELFE perform about the same on base resolution grids, capturing hurricane forerunner, peak surge near the track and away from the track and continental shelf waves
- FVCOM is more damped than ADCIRC and SELFE
- SLOSH does not predict forerunner, continental shelf waves or surge away from the track for Ike
- SLOSH appears to over inundate for Rita

Conclusions – Hurricane Storm Surge

- For high levels of inundation, the base resolution grids perform well
- For surge in rivers and through narrow inlets, high resolution is again necessary and improves overall model skill
- For low energy surge, geometric details become very important and high resolution inland is again essential
- 3D physics does not show systematic improvement over 2D physics

