Eyewall Replacement Cycles: Forecasting Onset and Associated Intensity and Structure Changes A Joint Hurricane Testbed Project

James Kossin^{1,2}, Matthew Sitkowski², William Lewis², and Christopher Rozoff²

¹NOAA's National Climatic Data Center, Asheville, North Carolina, USA

²Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin, USA

Acknowledgements: This NOAA Joint Hurricane Testbed project was funded by the US Weather Research Program in NOAA/OAR's Office of Weather and Air Quality, and by NOAA's National Climatic Data Center.

RAMMB/CIRA team NHC personnel

66th Interdepartmental Hurricane Conference Charleston, SC 5-9 March 2012

JHT project goals:

- Transition a new model to operations that provides probabilistic forecasts of eyewall replacement cycle events in hurricanes.
- Utilize low-level aircraft reconnaissance data to expand the general climatology of intensity and structure changes associated with eyewall replacement cycles.
- Apply the new climatology toward constructing new operational tools to forecast intensity and wind structure changes associated with eyewall replacement cycles.
- Continue model development toward increasing skill.

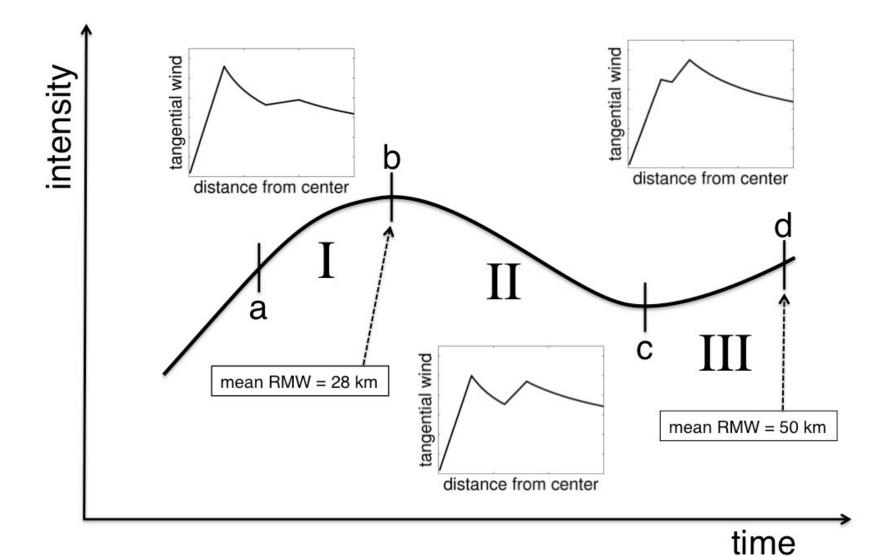
Model: probability of ERC onset

$$P(\text{ERC}|\mathbf{F}) = P(\text{ERC}) \frac{P(\mathbf{F}|\text{ERC})}{P(\mathbf{F})}$$

Statistical/empirical model transitioned to operations prior to the start of the 2010 hurricane season.

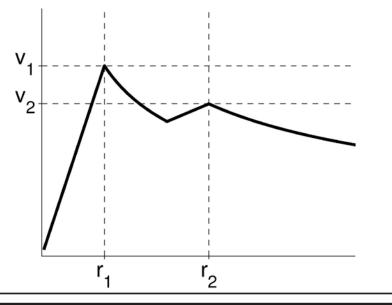
Executes within SHIPS using environmental and satellite-based features (${\bf F}$) as input.

Provides probability of the onset of an eyewall replacement cycle within lead-time periods: 0–12h, 12–24h, 24–36h, 36–48h.

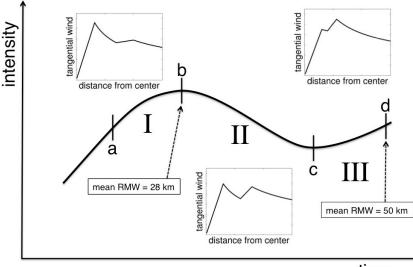

Model verification

Brier Skill Score (operational)

Year	N (ERC)	00-12 hr	12-24 hr	24-36 hr	36-48 hr
2011	5	+21%	+18%	+14%	+19%

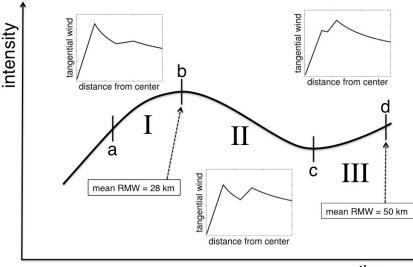


Eyewall replacement cycle climatology: three phases of an ERC


Climatology of intensity and structure changes

	Intensification		Weakening		Reintensification	
	Mean	SD	Mean	SD	Mean	SD
Δv_1 (kt)	+14	18	-20	11	-15	14
Δv_2 (kt)	+9	11	+18	14	+8	8
$\Delta v_{\text{best-track}}$ (kt)	+7	11	-9	12	-2	5
Δr_1 (km)	-7.0	11.5	-1.4	6.9	-2.2	8.0
Δr_2 (km)	-14.8	18.8	-28.8	15.9	-12.7	12.0
Δt (h)	9.4	9.1	16.6	8.6	10.7	12.6

Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. *Mon. Wea. Rev.*, **139**, 3829-3847.


time

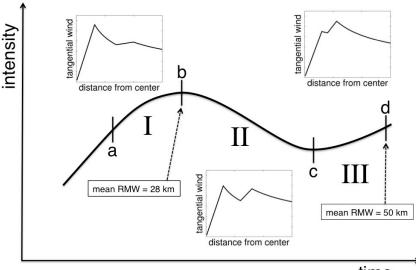
Predictor	Description
VMX	Current intensity (kt)
LAT	Lat (°)
SHRD	Avg 850–200-hPa shear magnitude (kt) in the annulus $r = 200-800$ km
VMPI	Max potential intensity (kt) as calculated following Bister and Emanuel (1998)
TWAC	Avg 850-hPa symmetric tangential wind (m s ⁻¹) in the annulus $r = 0-600$ km
IR00_02	Avg GOES channel-4 brightness temperature (°C) in the annulus $r = 0-200$ km
IR00_17	Radius (km) of min GOES brightness temperature within $r = 20-120$ km

Model 1

Amount of weakening: $\Delta v_1 = f$ (VMX, LAT, SHRD) $R^2 = 68\%$, RMSE = 3.6 kt

Storms that are stronger, or located at higher latitudes, or embedded in higher shear tend to weaken more during an ERC.

time

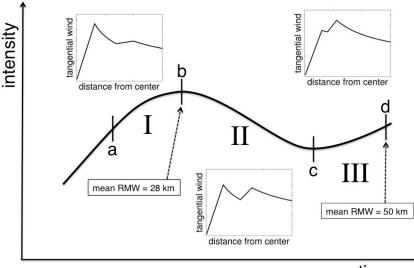

Predictor	Description		
VMX	Current intensity (kt)		
LAT	Lat (°)		
SHRD	Avg 850–200-hPa shear magnitude (kt) in the annulus $r = 200-800$ km		
VMPI	Max potential intensity (kt) as calculated following Bister and Emanuel (1998)		
TWAC	Avg 850-hPa symmetric tangential wind (m s ⁻¹) in the annulus $r = 0-600$ km		
IR00_02	Avg GOES channel-4 brightness temperature (°C) in the annulus $r = 0-200$ km		
IR00_17	Radius (km) of min GOES brightness temperature within $r = 20-120$ km		

Model 2

Duration of weakening: $\Delta t = f$ (IR00_17) R² = 49%, RMSE = 6.2 hr

The duration is longer when the coldest cloud tops are located farther away from the storm center.

Kossin, J. P., and M. Sitkowski, 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. *Wea. Forecasting*, to appear.


time

Predictor	Description
VMX	Current intensity (kt)
LAT	Lat (°)
SHRD	Avg 850–200-hPa shear magnitude (kt) in the annulus $r = 200-800$ km
VMPI	Max potential intensity (kt) as calculated following Bister and Emanuel (1998)
TWAC	Avg 850-hPa symmetric tangential wind (m s ⁻¹) in the annulus $r = 0-600$ km
IR00_02	Avg GOES channel-4 brightness temperature (°C) in the annulus $r = 0-200$ km
IR00_17	Radius (km) of min GOES brightness temperature within $r = 20-120$ km

Model 3

Rate of re-intensification: $dv_2/dt = f$ (VMPI, IR00_02) $R^2 = 47\%$, RMSE = 1.3 kt hr⁻¹

Lower PI and colder cloud tops are associated with faster rates.

time

Predictor	Description
VMX	Current intensity (kt)
LAT	Lat (°)
SHRD	Avg 850–200-hPa shear magnitude (kt) in the annulus $r = 200-800$ km
VMPI	Max potential intensity (kt) as calculated following Bister and Emanuel (1998)
TWAC	Avg 850-hPa symmetric tangential wind (m s ⁻¹) in the annulus $r = 0-600$ km
IR00_02	Avg GOES channel-4 brightness temperature (°C) in the annulus $r = 0-200$ km
IR00_17	Radius (km) of min GOES brightness temperature within $r = 20-120$ km

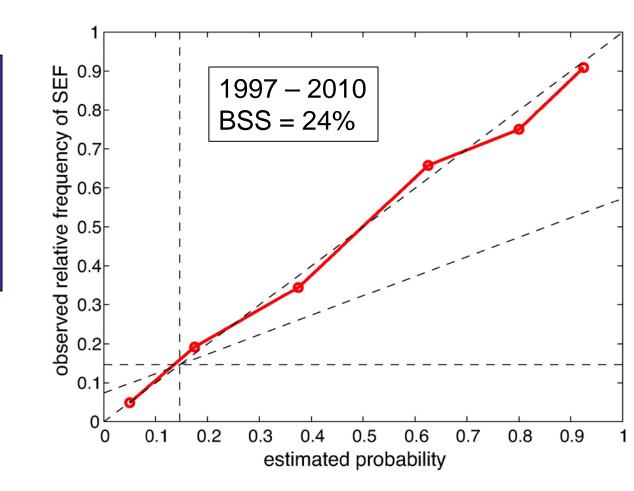
Model 4

Total expansion of RMW: $\Delta RMW = f(VMPI, TWAC)$ $R^2 = 51\%$, RMSE = 9.9 km

Higher PI and weaker broad-scale tangential wind is associated with greater expansion. Higher PI may control re-intensification through its effect on RMW.

Summary

The P(ERC)-model was successfully transitioned into NHC operations and has performed skillfully at all lead-times during the 2010 and 2011 seasons. Overall operational skill for the period 2008-2011 is quite good. Improvements to the P(ERC)-model improve the skill further.


Flight-level data were used to construct a climatology of intensity and wind structure changes associated with eyewall replacement cycles. This has been used to construct new intensity forecasting tools that are now ready for transition into operational testing.

P(ERC) model improvements: (optimal feature selection)

Features selected:

measures of intensity shear vertical motion relative humidity

In progress: logistic regression and 2-member ensemble

Operational SHIPS text output file	 ATLANTIC SHIPS INTENSITY FORECAST ODES DATA AVAILABLE OBC DATA AVAILABLE ALEX ALEX ALOIZO10 06/29/10 06 UTC TIME (HR) 0 6 12 18 24 36 48 60 72 84 96 108 120 V (KT) NO LAND 60 64 68 73 76 82 84 85 81 76 70 62 56 73 76 82 84 85 81 76 70 62 56 73 76 82 73 74 83 74 74 74 75 84 100 71 14 12 10 8 7 7 7 7 84 100 7 14 12 10 14 10 10 14 12 10 10 10 10 11 11 12 12 18 14 12 14 12 14 14
Intensity forecasts	ADJ. POT. INT. 128 131 133 134 133 128 122 119 118 119 116 109 104 200 MB T (C) -50.2 -50.3 -49.8 -49.4 -48.9 -48.9 -48.4 -48.4 -48.8 -48.8 -49.2 -49.2 TH_E DETV (C) 9 8 10 12 9 10 11 10 13 10 12 11 700-500 MB RH 77 73 75 76 78 81 80 82 82 80 76 74 71 GF8 VTEX (KT) 20 20 23 22 22 20 17 10 6 5 2 3 850 MB ENV VOR 123 115 128 140 126 116 100 90 82 41 37 8 9 200 MB DIV 59 50 54 58 43 52 71 66 46 7 15 -5 4 LAND (KM) 161 238
** PROBLTY OF AT LEAST 1 SCNDRY EYEWL FORMTN E TIME(HR) 0-12 12-24(0-24) 24-36(0-36) 36- CLIMO(%) 0 3(3) 5(8) PROB(%) 0 9(9) 34(40)	EVENT AL012010 ALEX06/29/2010 00 UTC **-48(0-48)8(15)4(42)FULL MODEL PROB (RAN NORMALLY)
Rapid Intensification Index (RII)	SST POTENTIAL 1. 2. 3. 4. 5. 5. 4. 3. 2. 1. 0. -2. VERTICAL SHEAR MAG 0. 0. 1. 2. 4. 6. 9. 11. 13. 13. 13. 14. VERTICAL SHEAR ADJ 0. 0. 0. 1. 2. 3. 3. 2. 2. 1. 1. VERTICAL SHEAR DIR 0. 0. 1. 1. 1. 2. 2. 2. 2. 1. 1. VERTICAL SHEAR DIR 0. 0. 1. 1. 1. 2. </td
Annular Hurricane Index (AHI)	DAYS FROM CLIM. PEAR 0. 0. 0. 0. 011111. 01. GOES PREDICTORS 0. 1. 1. 1. 2. 2. 2. 2. 2. 2. 1. 1. OCEAN HEAT CONTENT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. TOTAL CHANGE 4. 8. 13. 16. 22. 24. 25. 21. 16. 10. 24. ** 2010 ATLANTIC RI INDEX AL012010 ALEX 06/29/10 06 UTC ** (30 KT OR MORE MAX WIND INCREASE IN NEXT 24 HR)
Probability of Onset of an Eyewall Replacement Cycle	12 HR PERSIGTENCE (KT): 10.0 Range:-45.0 to 30.0 Soaled/Wgted Val: 0.7/ 1.6 850-200 MB SHEAR (KT): 10.3 Range: 25.2 to 3.2 Soaled/Wgted Val: 0.7/ 0.8 D200 (10**75-1) : 52.8 Range:-21.0 to 140.0 Soaled/Wgted Val: 0.5/ 0.7 POT = MFI-VMAX (KT) : 71.8 Range: 33.5 to 126.5 Soaled/Wgted Val: 0.4/ 0.3 850-700 MB REL HUM (%): 80.8 Range: 55.0 to 85.0 Soaled/Wgted Val: 0.9/ 0.5 % area w/pixels <-30 C: 76.0 Range: 17.0 to 100.0 Soaled/Wgted Val: 0.7/ 0.1 STD DEV OF IR BR TEMP : 15.3 Range: 30.6 to 3.2 Soaled/Wgted Val: 0.6/ 0.9 Heat content (KJ/om2): 33.2 Range: 0.0 to 130.0 Soaled/Wgted Val: 0.3/ 0.0 Prob of RI for 25 kt RI threshold= 32% is 2.6 times the sample mean(12.6%) Prob of RI for 30 kt RI threshold= 12% is 2.5 times the sample mean(4.8%) Prob of RI for 35 kt RI threshold= 12% is 2.5 times the sample mean(3.4%) ## ANNULAR HURRICANE INDEX (AEI) ALDI2010 ALEX 06/29/10 06 UTC ## ## STORM NOT ANNULAR, SCREENING STEP FAILED, NFASS=4 NFAIL=3 ##
J. Kossin, 66th IHC, Mar 2012	## AH= 0 (AHI OF 100 IS BEST FIT TO ANN. STRUC., 1 IS MARGINAL, 0 IS NOT ANNULAR) ## ## ANNULAR INDEX RAN NORMALLY *** PROBLTY OF AT LEAST 1 SCNDRY EYEML FORMIN EVENT AL012010 ALEX 06/29/2010 00 UTC ** TIME(ER) 0-12 12-24(0-24) 24-36(0-36) 36-48(0-48) 06/29/2010 00 UTC ** CLIMO(1) 0 3(3) 5(8) 8(15) < PROB BASED ON INTENSITY ONLY