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" SHIPS

21 total predictors used
Atmospheric Predictors from GFS
SST from Reynolds weekly fields
Predictors from satellite data

e Ocean Heat content from altimetry
e GOES IR window channel brightness temperature



_SHIPS Predictors

Persistence
e 12hr intensity change
e Max winds at t = o (Vmax)
e Vmax * 12 hr intensity change

Upper Level Temperature
e 20omb Temperature
e 250mb Temperature (relative to threshold temperature
of -44 C)
Sea Surface Potential

e Difference between forecasted Max Potential Intensity
and t = o intensity

e Sea Surface Potential squared

GFS Vortex Tendency

e Change in GFS o0-60o0km average symmetric tangential
wind at 85omb
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Zonal Storm motion(SPDX)

e X component of motion from lat-lon position (finite
differencing of forecast position from NHC)

Steering Layer Pressure
e Layer where wind best resembles storm motion

Satellite Predictors

e Standard Deviation of GOES Brightness Temperature
(0-200km) * Vmax

e Percent area where GOES Tb < -20 C (50-200km)
e Ocean Heat Content

Theta-E Excess

» Theta-E difference S)ostive only) between a parcel lifted
form the surface and its environment (200-8ookm
average)



850-200mb Shear

e Magnitude of shear with vortex removed averaged from
o-500km (SHR)

e Heading of above predictor
e SHR * Latitude
e SHR * Vmax

200mb Divergence

e Averaged from o0-1000km

8s50omb Vorticity

e Averaged from o0-1000km

Mid Level Relative Humidity

e Averaged from 700-500mb



““SHIPS Forecast Methodology

Multiple linear regression applied to normalized
independent and dependant variables

(value —mean)
stddev

Final forecast takes form of:

A*Z value(p) — mean(p) B
stdev(p)

where A is the standard deviation of the change in intensity;,
B is the mean change in intensity of all cases, and p
represents the predictors.

THIS ENTIRE STUDY UTILIZES REGRESSIONS FOR
INTENSITY TENDENCIES.



/

— SPIEE e

SPICE (Statistical Prediction of Intensity from a Consensus Ensemble) has been
developed as a combination of the official SHIPS and LGEM (logistic growth
equation model) intensity guidance, as well as SHIPS and LGEM runs based of the
large-scale environments in the GFDL and HWRF regional models. The six total
forecasts are combined into two unweighted consensuses: one from the three SHIPS
forecasts and one from the three LGEM forecasts. The two unweighted consensuses
are then combined into one weighted consensus, with the weights determined
empirically from the 2008-2010 official SHIPS and LGEM sample. These weights
favored the SHIPS consensus in the early time periods, shifting to the LGEM
consensus being weighted more heavily after about 36 hours. Retrospective tests of
SPICE over the 2008-2010 Atlantic hurricane seasons indicated that SPICE
outperformed both SHIPS and LGEM at all lead times, and the improvements were
statistically significant at almost all times. SPICE was run real-time during the 2011
season as part of the Hurricane Forecast Improvement Project (HFIP), and results
from the season will be presented here. Experiments with using COAMPS-TC,
additional regional and global models, and a variable consensus will also be
considered.



List of FSU Diagnostic Parameters

1. Vertical Differential of Heating
2. Transformation of Shear to Curvature Vorticity

3. Energy Exchange from the Divergent to the Rotational
Kinetic Energy in the Inner Core

4. Angular Momentum
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DATA-SETS USED FOR FS

The data sets we used for the extended SHIPS were based on a reanalysis
that was provided to us by the HWRF group. It carried the following steps:

1. Start with GFS analysis at T 382L64 , transform grid separation
roughly 35 km

2. Remove vortex from GFS using GFDL method , Kurihara et al

3. Use HWRF's 12 hour forecast as a first guess to redefine a new
Initial vortex

4. Use above within GFS to re-assimilate that vortex along with the
dropwindsonde data sets.



For this study we includes 154 forecast segments for every forecast at 12
hour interval between hours 12 to 108 hours.

The diagnostic variables: vertical differential of heating (for the complete
PV equation), shear to curvature kinematics and the transformation of
divergent kinetic energy into rotational kinetic energy are all evaluated
from the final HWRF analysis at the 850hPa level. The advection of earths
and relative angular momentum are averaged over a three dimensional
box that covers the same horizontal area as above, in the vertical the box
average extends from the surface to 100 hPa.

The domain of these computations is a 10 degree latitude by 10 degree
longitude box, with the hurricane located close to the center of the box.

These computations are carried out every 12 hours and are designed to
provide guidance for 12 hourly intensity forecasts.
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Diabatic Potential Vorticity
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Complete PV equation:

The natural framework for the diabatic potential vorticity uses the
potential temperature as a vertical co-ordinate. The complete
Ertel PV equation in isentropic co-ordinates (Bluestein, 1993) is
expressed as:

d(  88) \0dg _00[_dfaW xk)| 26
—( GanY 8pj ( Gae) +9 {V } {V-(F xk)}g ap 1) (1)

dt o0 dt “opl dt o6

where the isentropic absolute vorticity is given by :

gagzgj —a—uj +Etan¢ f
O oy

(2)
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On an isentropic surface, the local rate of change of PV is the sum
of (1) horizontal advection of PV; (2) vertical advection of PV; (3)
vertical differential of heating; (4) horizontal differential of
heating; (5) the friction term. If the last four terms are neglected,
equation 4 reduces to the adiabatic equation for the conservation
of potential vorticity. Retaining these terms allows us to account
for the generation or destruction of potential vorticity arising
from the horizontal or vertical heating differentials and friction.
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Wtion of diabatic PV contri fons:, e

a. Vertical Advection

The vertical advection term in the isentropic frame is given as:

_d8 2
dt ¢6

(PV)

Thus the contribution of the vertical advection term depends on
the vertical distribution of PV. Figure (1a,b) illustrates the vertical
distribution of and PV for Hurricane Ivan (at 12Z on n
September 2004).
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Figure 1a: Vertical distribution of % (x

10%) for hurricane IVAN. 11 September
2004, 12z. The unit 1s K/s.

-5

20

25

30

35

40

45

50

3501

4001

450 1

500 1

550 1
600 1
650 1
7004
7504
800 1

850 1
900 1

950

20

30

40

50

60

70

80

90

100 110 120 130 140 150

Figure 1b: Vertical distribution of PV (x
10'?} for hurricane IVAN. 11 September
2004, 12z. The unit is rnzs'lkg'lK.
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b. Vertical Differential of heating

This 1s similar to the divergence term of the vorticity equation and is written as

% : : . ¢ d @ .
+ PV ¢ (the 1sobaric component i1s ¢, X C, O o - &, V.V). Below the level
ol dt cp dt cp

-

. . de ¢ d . »
of maximum heating = the value of A > (0and the PV is positive. Thus a net
I c I

generation of PV. (ie.. PVLE::- 0) occurs. Large wvalues of PV and © d8 were
ea dt ce dt

generally found in the lower troposphere below the 600 hPa level. Such an increase of PV in
the mmner core of the hwricane where the static stability is generally decreasing (and not
increasing) leads to an increase of absolute vorticity (since PV 1s a product of absolute
vorticity and stability). The increase of absolute vorticity contributes to an increase of

curvature and the shear vorticity of the parcels. which in tumn contributes to an increase of

the storms intensity.
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In the complete PV equation this diabatic term has the form (Vv g

dt dp

L

éo(éu éde & éde)

. When we look at
eplég ey di edéx dr )

This can be expressed in the scalar form — g

this. we note that this term 1s quite similar to the familiar twisting term of the vorticity

equation in 1sobaric coordinates.

From the nature of it. we can expect some large values of this term across the eyvewall
and rainbands of a hurricane. The radial gradient of heating (especially convective heating)
is large and changes sign across the eye wall. This term 1s expected to have opposite signs on
the two sides of the eye wall. We can obtain an approximate order of magnitude of this term

by examining it along the radial direction.



e
Along a radial line extending from the storm center outwards. we can approximate
B Ve & de )

—| —~——|. where ¥, 1s the tangential component of the
gl 8 a di)

this term by the expression —g

: dg . . : : :
wind. The change of - along the radial direction over the approximately 10 % thickness of
r

a typical eye wall can be substantial. As a result. the lateral heating term can also acquire a
value of close to 107%%zIm?s7K . Some caution should be exercised in accepting this as a
typical order of magnitude for the horizontal differential of heating since convective heating

(and vertical motions) can be resolution dependent.
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Transformation of Shear to Curvature
Vorticity



Shear- and curvature-vorticity equations

Bell, G.D., and D. Keyser. 1993. Shear and Curvature vorticity and Potential-
Vorticity Interchanges: Interpretation and Application to a Cutoff Cyclone
Event. Mon. Wea. Rev. 121(76-102).

Vildez, A., and R.L. Haney. 1996. On the Shear and Curvature Vorticity
Equations. J. Atmos. Sci., 53(3384-3394).
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do BV da L)
(f+ as) ds dt (as)

3 dw 9
—(f+Va':)V V- V=22 (2.7a)

ds dp
df oV _ 9V da N 0 [(dp\ .
dt an JOs dt os

av Ow AV
~ \7Z . (2.
( an) v on dp (2.70)
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- The sum of (2.7a) and (2.7b) recovers the natural-
coordinate form of the tendency equation for absolute
vorticity:

d da AV doe AV
Iy p2e 2PV o (e v¥-2Z\y,.v
dt(f dFr 6n) (f ds an) 3

Vgga_aJraan
ds dp On dp

(2.7¢c)
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Cartesian Coordinate Expressions for the Terms
in the Tendency Equations for Shear
and Curvature Vorticity

Although the natural-coordinate system (refer to Fig.
1) 1s well suited to isolating and interpreting the inter-
change process between shear and curvature vorticity,
numerical evaluation of differential quantities in this
coordinate system is a particularly cumbersome task.
In order to avoid the need to calculate the various terms
1n the tendency equations for shear and curvature vor-
ticity in natural coordinates, we transform these terms
into Cartesian coordinates. The Cartesian coordinate
counterparts of the terms in the tendency equations
then may be discretized using standard centered finite
dafferences.
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Energy Exchange from the Divergent to the Rotational
Kinetic Energy in the Inner Core
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Angular Momentum
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Data sets of the present study

1. FSU Diagnostic parameters are computed from HWRF
Forecast for many hurricane cases during the 2008 and
2009 seasons.

2. HWRF model simulations carry two nested domains 27km
and 9km. We have used Inner nest domain (9km resolution)
data for computation of FSU Diagnostics parameters.

3. Data sets used for Regressions (154 hurricanes) include
most of the 2008 and 2009 Hurricane cases, this does
not include cases that were deliberately left out for
forecast applications (15 hurricanes) presented here.
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CONCLUSIONS

FSU EXTENDED SHIPS/SPICE ALGORITHM FOR HURRICANE
INTENSITY FORECAST IMPROVEMENTS IS ALMOST READY FOR
OPERATIONS.

THE FSU DIAGNOSTIC VARIABLES BASED ON DIABATIC PV,
ANGULAR MOMENTUM TRANSPORTS INTO HURRICANE CORE ,
ENERGY PROVIDED BY DIVERGENT WINDS AND THE SHEAR TO
CURVATURE KINEMATICS PROVIDE GREAT STRENGTHS TO THE
CURRENT SHIPS AND THE SPICE FORECAST PARAMETERS.

RESULTS SHOW THAT A COMBINATION OF THE SHIPS, SPICE
AND FSU PARAMETRS PROVIDES, CONSISTENTLY, THE BEST
HURRICANE INTENSITY FORECASTS.

FOR DAY 3 FORECAST THE COMBINED ALOGORITH IMPROVE
INTENSITY FORECAST BY 7% COMPARE TO SPICE AND FOR 108
HOUR FORECAST THE IMPROVEMENTS ARE AROUND 5%o.
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